Pseudomonas putida—a versatile host for the production of natural products

Springer Science and Business Media LLC - Tập 99 - Trang 6197-6214 - 2015
Anita Loeschcke1,2, Stephan Thies1,3
1Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Jülich, Germany
2Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
3Bioeconomy Science Center (BioSC), Jülich, Germany

Tóm tắt

The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.

Tài liệu tham khảo

Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348. doi:10.1081/SS-200042244

Blank LM, Rosenau F, Wilhelm S, Wittgens A, Tiso T (2013) Means and methods for rhamnolipid production. Patent No. EP2573172 A1

Chang W-S, van de Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299. doi:10.1128/JB.00727-07

Craig JW, Chang F-Y, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641. doi:10.1128/AEM.02169-09

Durante-Rodríguez G, de Lorenzo V, Martínez-García E (2014) The Standard European Vector Architecture (SEVA) plasmid toolkit. Methods Mol Biol 1149:469–478. doi:10.1007/978-1-4939-0473-0_36

Frommeyer M, Steinbüchel A (2013) Increased lysine content is the main characteristic of the soluble form of the polyamide cyanophycin synthesized by recombinant Escherichia coli. Appl Environ Microbiol 79:4474–4483. doi:10.1128/AEM.00986-13

Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361. doi:10.1016/B978-0-12-385120-8.00015-2

Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378. doi:10.1128/AEM.67.8.3371-3378.2001

Hausmann R, Syldatk C (2014) Types and classification of microbial surfactants. In: Kosaric N, Sukan F (eds) Biosurfactants: production and utilization—processes, technologies, and economics. CRC Press Taylor & Francis Group, Boca Raton, pp. 3–18

Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368. doi:10.1002/(SICI)1097-0290(19991105)65:3<363::AID-BIT15>3.0.CO;2-1

Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463. doi:10.1128/AEM.70.4.2452-2463.2004

Martínez-García E, de Lorenzo V (2012) Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 813:267–283. doi:10.1007/978-1-61779-412-4_16

Meijnen J-P, de Winde JH, Ruijssenaars HJ (2012) Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered Pseudomonas putida S12. J Biol Chem 287:14606–14614. doi:10.1074/jbc.M111.337501

Perlova O, Fu J, Kuhlmann S, Krug D, Stewart AF, Zhang Y, Müller R (2006) Reconstitution of the myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus. Appl Environ Microbiol 72:7485–7494. doi:10.1128/AEM.01503-06

Rehm BH, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109. doi:10.1128/AEM.67.7.3102-3109.2001

Rokni-Zadeh H, Li W, Sanchez-Rodriguez A, Sinnaeve D, Rozenski J, Martins JC, de Mot R (2012) Genetic and functional characterization of cyclic lipopeptide white-line-inducing principle (WLIP) production by rice rhizosphere isolate Pseudomonas putida RW10S2. Appl Environ Microbiol 78:4826–4834. doi:10.1128/AEM.00335-12

Schaffer S, Wessel M, Thiessenhusen A, Stein N (2012) Cells and methods for the preparation of rhamnolipids. Patent No. US20130130319 A1

Sudarsan S, Dethlefsen S, Blank LM, Siemann-Herzberg M, Schmid A (2014) The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Appl Environ Microbiol 80:5292–5303. doi:10.1128/AEM.01643-14

Van Beilen JB, Holtackers R, Lüscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744. doi:10.1128/AEM.71.4.1737-1744.2005

Verhoef S, Wierckx N, Westerhof RGM, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936. doi:10.1128/AEM.02186-08

Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227. doi:10.1128/AEM.71.12.8221-8227.2005

Xing X, Jiang P (2011) Recombinant bacteria for producing deoxyviolacein and uses thereof. Patent No US20110183384 A1