Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology

PLoS Computational Biology - Tập 4 Số 10 - Trang e1000210
Jacek Puchałka1, Matthew Oberhardt2, Miguel Godinho1, Agata Bielecka‐Dąbrowa1, Daniela Regenhardt3, Kenneth N. Timmis3, Jason A. Papin2, Vítor A. P. Martins dos Santos1
1Synthetic and Systems Biology Group, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany.
2Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, United States of America.
3Environmental Microbiology Group, Helmholtz Center for Infection Research#N# (HZI), Braunschweig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

KN Timmis, 2002, <italic>Pseudomonas putida</italic>: a cosmopolitan opportunist par excellence., Environ Microbiol, 4, 779, 10.1046/j.1462-2920.2002.00365.x

VAPM dos Santos, 2004, Insights into the genomic basis of niche specificity of <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 6, 1264, 10.1111/j.1462-2920.2004.00734.x

ERB Moore, 2006, Nonmedical: <italic>Pseudomonas</italic>., 646

G Mosqueda, 1999, Toluene metabolism by the solvent-tolerant <italic>Pseudomonas putida</italic> DOT-T1 strain, and its role in solvent impermeabilization., Gene, 232, 69, 10.1016/S0378-1119(99)00113-4

JAM de Bont, 1998, Solvent-tolerant bacteria in biocatalysis., Trends Biotechnol, 16, 493, 10.1016/S0167-7799(98)01234-7

NJP Wierckx, 2005, Engineering of solvent-tolerant <italic>Pseudomonas putida</italic> S12 for bioproduction of phenol from glucose., Appl Environ Microbiol, 71, 8221, 10.1128/AEM.71.12.8221-8227.2005

K Nijkamp, 2005, The solvent-tolerant <italic>Pseudomonas putida</italic> S12 as host for the production of cinnamic acid from glucose., Appl Microbiol Biotechnol, 69, 170, 10.1007/s00253-005-1973-7

WJ Choi, 1997, Enhanced production of cis,cis-muconate in a cell-recycle bioreactor., J Ferment Bioeng, 84, 70, 10.1016/S0922-338X(97)82789-4

MI Ramos-Gonzalez, 2003, Genetic engineering of a highly solvent-tolerant <italic>Pseudomonas putida</italic> strain for biotransformation of toluene to p-hydroxybenzoate., Appl Environ Microbiol, 69, 5120, 10.1128/AEM.69.9.5120-5127.2003

S Verhoef, 2007, Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant <italic>Pseudomonas putida</italic> S12., J Biotechnol, 132, 49, 10.1016/j.jbiotec.2007.08.031

K Nijkamp, 2007, Optimization of the solvent-tolerant <italic>Pseudomonas putida</italic> S12 as host for the production of p-coumarate from glucose., Appl Microbiol Biotechnol, 74, 617, 10.1007/s00253-006-0703-0

S Stephan, 2006, Metabolic physiology of <italic>Pseudomonas putida</italic> for heterologous production of myxochromide., Process Biochem, 41, 2146, 10.1016/j.procbio.2006.06.022

A Schmid, 2001, Industrial biocatalysis today and tomorrow., Nature, 409, 258, 10.1038/35051736

KE Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 4, 799, 10.1046/j.1462-2920.2002.00366.x

LP Wackett, 2003, <italic>Pseudomonas putida</italic>—a versatile biocatalyst., Nat Biotechnol, 21, 136, 10.1038/nbt0203-136

JI Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 4, 824, 10.1046/j.1462-2920.2002.00370.x

GNM Huijberts, 1996, Production of poly(3-hydroxyalkanoates) by <italic>Pseudomonas putida</italic> KT2442 in continuous cultures., Appl Microbiol Biotechnol, 46, 233, 10.1007/s002530050810

A Steinbüchel, 2001, Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms., Adv Biochem Eng Biotechnol, 71, 81

ND Price, 2004, Genome-scale models of microbial cells: evaluating the consequences of constraints., Nat Rev Microbiol, 2, 886, 10.1038/nrmicro1023

JL Reed, 2003, Thirteen years of building constraint-based <italic>in silico</italic> models of <italic>Escherichia coli</italic>., J Bacteriol, 185, 2692, 10.1128/JB.185.9.2692-2699.2003

JA Papin, 2003, Metabolic pathways in the post-genome era., Trends Biochem Sci, 28, 250, 10.1016/S0968-0004(03)00064-1

A Varma, 1994, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type <italic>Escherichia coli</italic> W3110., Appl Environ Microbiol, 60, 3724, 10.1128/AEM.60.10.3724-3731.1994

MW Covert, 2004, Integrating high-throughput and computational data elucidates bacterial networks., Nature, 429, 92, 10.1038/nature02456

ND Price, 2003, Genome-scale microbial <italic>in silico</italic> models: the constraints-based approach., Trends Biotechnol, 21, 162, 10.1016/S0167-7799(03)00030-1

AR Joyce, 2007, Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach., Prog Drug Res, 64, 267

KH Lee, 2007, Systems metabolic engineering of <italic>Escherichia coli</italic> for <sc>l</sc>-threonine production., Mol Syst Biol, 3, 149, 10.1038/msb4100196

P Pharkya, 2004, OptStrain: a computational framework for redesign of microbial production systems., Genome Res, 14, 2367, 10.1101/gr.2872004

AP Burgard, 2003, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization., Biotechnol Bioeng, 84, 647, 10.1002/bit.10803

P Pharkya, 2003, Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock., Biotechnol Bioeng, 84, 887, 10.1002/bit.10857

JA Papin, 2004, Comparison of network-based pathway analysis methods., Trends Biotechnol, 22, 400, 10.1016/j.tibtech.2004.06.010

BR Bochner, 2001, Phenotype microarrays for high-throughput phenotypic testing and assay of gene function., Genome Res, 11, 1246, 10.1101/gr.186501

E Fischer, 2004, High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived <sup>13</sup>C constraints., Anal Biochem, 325, 308, 10.1016/j.ab.2003.10.036

JL Reed, 2003, An expanded genome-scale model of <italic>Escherichia coli</italic> K-12 (iJR904 GSM/GPR)., Genome Biol, 4, R54, 10.1186/gb-2003-4-9-r54

A Osterman, 2003, Missing genes in metabolic pathways: a comparative genomics approach., Curr Opin Chem Biol, 7, 238, 10.1016/S1367-5931(03)00027-9

M Kanehisa, 2000, KEGG: Kyoto Encyclopedia of Genes and Genomes., Nucleic Acids Res, 28, 27, 10.1093/nar/28.1.27

O Revelles, 2005, Multiple and interconnected pathways for <sc>l</sc>-lysine catabolism in <italic>Pseudomonas putida</italic> KT2440., J Bacteriol, 187, 7500, 10.1128/JB.187.21.7500-7510.2005

WA Duetz, 1996, Catabolite repression of the toluene degradation pathway in <italic>Pseudomonas putida</italic> harboring pWWO under various conditions of nutrient limitation in chemostat culture., Appl Environ Microbiol, 62, 601, 10.1128/AEM.62.2.601-606.1996

T Pfeiffer, 2005, Game-theoretical approaches to studying the evolution of biochemical systems., Trends Biochem Sci, 30, 20, 10.1016/j.tibs.2004.11.006

S Schuster, 2008, Is maximization of molar yield in metabolic networks favoured by evolution?, J Theor Biol, 252, 497, 10.1016/j.jtbi.2007.12.008

J Pramanik, 1998, Effect of <italic>Escherichia coli</italic> biomass composition on central metabolic fluxes predicted by a stoichiometric model., Biotechnol Bioeng, 60, 230, 10.1002/(SICI)1097-0290(19981020)60:2<230::AID-BIT10>3.0.CO;2-Q

R Mahadevan, 2003, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models., Metab Eng, 5, 264, 10.1016/j.ymben.2003.09.002

JB Russell, 1995, Energetics of bacterial growth: balance of anabolic and catabolic reactions., Microbiol Rev, 59, 48, 10.1128/MMBR.59.1.48-62.1995

WP Hempfling, 1975, Effects of varying carbon source limiting growth on yield and maintenance characteristics of <italic>Escherichia coli</italic> in continuous culture., J Bacteriol, 123, 1076, 10.1128/JB.123.3.1076-1087.1975

SE Mainzer, 1976, Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of <italic>Escherichia coli</italic>., J Bacteriol, 126, 251, 10.1128/JB.126.1.251-256.1976

S Isken, 1999, Effect of organic solvents on the yield of solvent-tolerant <italic>Pseudomonas putida</italic> S12., Appl Environ Microbiol, 65, 2631, 10.1128/AEM.65.6.2631-2635.1999

J Fieschko, 1984, Statistical analysis in the estimation of maintenance and true growth yield coefficients., Biotechnol Bioeng, 26, 394, 10.1002/bit.260260420

G Bratbak, 1985, Bacterial biovolume and biomass estimations., Appl Environ Microbiol, 49, 1488, 10.1128/AEM.49.6.1488-1493.1985

AP Burgard, 2004, Flux coupling analysis of genome-scale metabolic network reconstructions., Genome Res, 14, 301, 10.1101/gr.1926504

T Fuhrer, 2005, Experimental identification and quantification of glucose metabolism in seven bacterial species., J Bacteriol, 187, 1581, 10.1128/JB.187.5.1581-1590.2005

T del Castillo, 2007, Convergent peripheral pathways catalyze initial glucose catabolism in <italic>Pseudomonas putida</italic>: genomic and flux analysis., J Bacteriol, 189, 5142, 10.1128/JB.00203-07

AJ Cozzone, 1998, Regulation of acetate metabolism by protein phosphorylation in enteric bacteria., Annu Rev Microbiol, 52, 127, 10.1146/annurev.micro.52.1.127

B Teusink, 2006, Analysis of growth of <italic>Lactobacillus plantarum</italic> WCFS1 on a complex medium using a genome-scale metabolic model., J Biol Chem, 281, 40041, 10.1074/jbc.M606263200

R Schuetz, 2007, Systematic evaluation of objective functions for predicting intracellular fluxes in <italic>Escherichia coli</italic>., Mol Syst Biol, 3, 119, 10.1038/msb4100162

C Pal, 2006, Chance and necessity in the evolution of minimal metabolic networks., Nature, 440, 667, 10.1038/nature04568

PR Jensen, 1992, Carbon and energy metabolism of atp mutants of <italic>Escherichia coli</italic>., J Bacteriol, 174, 7635, 10.1128/jb.174.23.7635-7641.1992

K von Meyenburg, 1982, Promoters of the atp operon coding for the membrane-bound ATP synthase of <italic>Escherichia coli</italic> mapped by Tn10 insertion mutations., Mol Gen Genet, 188, 240, 10.1007/BF00332682

HL Kornberg, 1966, Role and control of glyoxylate cycle in <italic>Escherichia coli</italic>., Biochem J, 99, 1, 10.1042/bj0990001

E Fischer, 2005, Large-scale in vivo flux analysis shows rigidity and suboptimal performance of <italic>Bacillus subtilis</italic> metabolism., Nat Genet, 37, 636, 10.1038/ng1555

YK Oh, 2007, Genome-scale reconstruction of metabolic network in <italic>Bacillus subtilis</italic> based on high-throughput phenotyping and gene essentiality data., J Biol Chem, 282, 28791, 10.1074/jbc.M703759200

MA Oberhardt, 2008, Genome-scale metabolic network analysis of the opportunistic pathogen <italic>Pseudomonas aeruginosa</italic> PAO1., J Bacteriol, 190, 2790, 10.1128/JB.01583-07

A Steinbuchel, 2001, Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example., Macromol Biosci, 1, 1, 10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B

G Giavaresi, 2004, New polymers for drug delivery systems in orthopaedics: in vivo biocompatibility evaluation., Biomed Pharmacother, 58, 411, 10.1016/S0753-3322(04)00111-8

GAM van der Walle, 2001, Properties, modifications and applications of biopolyesters., Adv Biochem Eng Biotechnol, 71, 263

S Klinke, 2000, Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in <italic>Pseudomonas putida</italic>., Appl Environ Microbiol, 66, 909, 10.1128/AEM.66.3.909-913.2000

KR Patil, 2004, Use of genome-scale microbial models for metabolic engineering., Curr Opin Biotechnol, 15, 64, 10.1016/j.copbio.2003.11.003

N Jamshidi, 2008, Formulating genome-scale kinetic models in the post-genome era., Mol Syst Biol, 4, 171, 10.1038/msb.2008.8

AR Joyce, 2006, The model organism as a system: integrating ‘omics’ data sets., Nat Rev Mol Cell Biol, 7, 198, 10.1038/nrm1857

S Seker, 1997, Multi-substrate growth kinetics of <italic>Pseudomonas putida</italic> for phenol removal., Appl Microbiol Biotechnol, 47, 610, 10.1007/s002530050982

A Kumar, 2005, Biodegradation kinetics of phenol and catechol using <italic>Pseudomonas putida</italic> MTCC 1194., Biochem Eng J, 22, 151, 10.1016/j.bej.2004.09.006

SJ Wang, 2001, Biotransformation kinetics of <italic>Pseudomonas putida</italic> for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate., Biodegradation, 12, 189, 10.1023/A:1013170322269

T Abuhamed, 2004, Kinetics model for growth of <italic>Pseudomonas putida</italic> F1 during benzene, toluene and phenol biodegradation., Process Biochem, 39, 983, 10.1016/S0032-9592(03)00210-3

JS Edwards, 2000, Metabolic flux balance analysis and the <italic>in silico</italic> analysis of <italic>Escherichia coli</italic> K-12 gene deletions., BMC Bioinformatics, 1, 1, 10.1186/1471-2105-1-1

PA Vanrolleghem, 1998, A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients., Biotechnol Bioeng, 58, 133, 10.1002/(SICI)1097-0290(19980420)58:2/3<133::AID-BIT4>3.0.CO;2-M

BO Palsson, 2006, Systems Biology: Properties of Reconstructed Networks., 10.1017/CBO9780511790515

A Varma, 1993, Metabolic capabilities of Escherichia-Coli .1. Synthesis of biosynthetic precursors and cofactors., J Theor Biol, 165, 477, 10.1006/jtbi.1993.1202

JM Lee, 2006, Flux balance analysis in the era of metabolomics., Brief Bioinform, 7, 140, 10.1093/bib/bbl007

JS Edwards, 2000, The <italic>Escherichia coli</italic> MG1655 <italic>in silico</italic> metabolic genotype: Its definition, characteristics, and capabilities., Proc Natl Acad Sci U S A, 97, 5528, 10.1073/pnas.97.10.5528

S Schuster, 2000, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks., Nature Biotechnology, 18, 326, 10.1038/73786

JL Reed, 2004, Genome-scale <italic>in silico</italic> models of E-coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states., Genome Res, 14, 1797, 10.1101/gr.2546004

HPJ Bonarius, 1997, Flux analysis of underdetermined metabolic networks: the quest for the missing constraints., Trends Biotechnol, 15, 308, 10.1016/S0167-7799(97)01067-6

M Kanehisa, 2006, From genomics to chemical genomics: new developments in KEGG., Nucleic Acids Res, 34, D354, 10.1093/nar/gkj102

GL Winsor, 2005, <italic>Pseudomonas aeruginosa</italic> Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation., Nucleic Acids Res, 33, D338, 10.1093/nar/gki047

I Schomburg, 2002, BRENDA, enzyme data and metabolic information., Nucleic Acids Res, 30, 47, 10.1093/nar/30.1.47

IY Goryshin, 1998, Tn5 in vitro transposition., J Biol Chem, 273, 7367, 10.1074/jbc.273.13.7367

G Caetano-Anolles, 1993, Amplifying DNA with arbitrary oligonucleotide primers., Genome Res, 3, 85, 10.1101/gr.3.2.85

GA O'Toole, 1998, Initiation of biofilm formation in <italic>Pseudomonas fluorescens</italic> WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis., Mol Microbiol, 28, 449, 10.1046/j.1365-2958.1998.00797.x

F Sanger, 1977, DNA sequencing with chain-terminating inhibitors., Proc Natl Acad Sci U S A, 74, 5463, 10.1073/pnas.74.12.5463

B Hoschle, 2005, Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in <italic>Pseudomonas aeruginosa</italic>., Microbiology, 151, 3649, 10.1099/mic.0.28260-0