Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology
Tóm tắt
Từ khóa
Tài liệu tham khảo
KN Timmis, 2002, <italic>Pseudomonas putida</italic>: a cosmopolitan opportunist par excellence., Environ Microbiol, 4, 779, 10.1046/j.1462-2920.2002.00365.x
VAPM dos Santos, 2004, Insights into the genomic basis of niche specificity of <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 6, 1264, 10.1111/j.1462-2920.2004.00734.x
ERB Moore, 2006, Nonmedical: <italic>Pseudomonas</italic>., 646
G Mosqueda, 1999, Toluene metabolism by the solvent-tolerant <italic>Pseudomonas putida</italic> DOT-T1 strain, and its role in solvent impermeabilization., Gene, 232, 69, 10.1016/S0378-1119(99)00113-4
JAM de Bont, 1998, Solvent-tolerant bacteria in biocatalysis., Trends Biotechnol, 16, 493, 10.1016/S0167-7799(98)01234-7
NJP Wierckx, 2005, Engineering of solvent-tolerant <italic>Pseudomonas putida</italic> S12 for bioproduction of phenol from glucose., Appl Environ Microbiol, 71, 8221, 10.1128/AEM.71.12.8221-8227.2005
K Nijkamp, 2005, The solvent-tolerant <italic>Pseudomonas putida</italic> S12 as host for the production of cinnamic acid from glucose., Appl Microbiol Biotechnol, 69, 170, 10.1007/s00253-005-1973-7
WJ Choi, 1997, Enhanced production of cis,cis-muconate in a cell-recycle bioreactor., J Ferment Bioeng, 84, 70, 10.1016/S0922-338X(97)82789-4
MI Ramos-Gonzalez, 2003, Genetic engineering of a highly solvent-tolerant <italic>Pseudomonas putida</italic> strain for biotransformation of toluene to p-hydroxybenzoate., Appl Environ Microbiol, 69, 5120, 10.1128/AEM.69.9.5120-5127.2003
S Verhoef, 2007, Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant <italic>Pseudomonas putida</italic> S12., J Biotechnol, 132, 49, 10.1016/j.jbiotec.2007.08.031
K Nijkamp, 2007, Optimization of the solvent-tolerant <italic>Pseudomonas putida</italic> S12 as host for the production of p-coumarate from glucose., Appl Microbiol Biotechnol, 74, 617, 10.1007/s00253-006-0703-0
S Stephan, 2006, Metabolic physiology of <italic>Pseudomonas putida</italic> for heterologous production of myxochromide., Process Biochem, 41, 2146, 10.1016/j.procbio.2006.06.022
KE Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 4, 799, 10.1046/j.1462-2920.2002.00366.x
LP Wackett, 2003, <italic>Pseudomonas putida</italic>—a versatile biocatalyst., Nat Biotechnol, 21, 136, 10.1038/nbt0203-136
JI Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from <italic>Pseudomonas putida</italic> KT2440., Environ Microbiol, 4, 824, 10.1046/j.1462-2920.2002.00370.x
GNM Huijberts, 1996, Production of poly(3-hydroxyalkanoates) by <italic>Pseudomonas putida</italic> KT2442 in continuous cultures., Appl Microbiol Biotechnol, 46, 233, 10.1007/s002530050810
A Steinbüchel, 2001, Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms., Adv Biochem Eng Biotechnol, 71, 81
ND Price, 2004, Genome-scale models of microbial cells: evaluating the consequences of constraints., Nat Rev Microbiol, 2, 886, 10.1038/nrmicro1023
JL Reed, 2003, Thirteen years of building constraint-based <italic>in silico</italic> models of <italic>Escherichia coli</italic>., J Bacteriol, 185, 2692, 10.1128/JB.185.9.2692-2699.2003
JA Papin, 2003, Metabolic pathways in the post-genome era., Trends Biochem Sci, 28, 250, 10.1016/S0968-0004(03)00064-1
A Varma, 1994, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type <italic>Escherichia coli</italic> W3110., Appl Environ Microbiol, 60, 3724, 10.1128/AEM.60.10.3724-3731.1994
MW Covert, 2004, Integrating high-throughput and computational data elucidates bacterial networks., Nature, 429, 92, 10.1038/nature02456
ND Price, 2003, Genome-scale microbial <italic>in silico</italic> models: the constraints-based approach., Trends Biotechnol, 21, 162, 10.1016/S0167-7799(03)00030-1
AR Joyce, 2007, Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach., Prog Drug Res, 64, 267
KH Lee, 2007, Systems metabolic engineering of <italic>Escherichia coli</italic> for <sc>l</sc>-threonine production., Mol Syst Biol, 3, 149, 10.1038/msb4100196
P Pharkya, 2004, OptStrain: a computational framework for redesign of microbial production systems., Genome Res, 14, 2367, 10.1101/gr.2872004
AP Burgard, 2003, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization., Biotechnol Bioeng, 84, 647, 10.1002/bit.10803
P Pharkya, 2003, Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock., Biotechnol Bioeng, 84, 887, 10.1002/bit.10857
JA Papin, 2004, Comparison of network-based pathway analysis methods., Trends Biotechnol, 22, 400, 10.1016/j.tibtech.2004.06.010
BR Bochner, 2001, Phenotype microarrays for high-throughput phenotypic testing and assay of gene function., Genome Res, 11, 1246, 10.1101/gr.186501
E Fischer, 2004, High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived <sup>13</sup>C constraints., Anal Biochem, 325, 308, 10.1016/j.ab.2003.10.036
JL Reed, 2003, An expanded genome-scale model of <italic>Escherichia coli</italic> K-12 (iJR904 GSM/GPR)., Genome Biol, 4, R54, 10.1186/gb-2003-4-9-r54
A Osterman, 2003, Missing genes in metabolic pathways: a comparative genomics approach., Curr Opin Chem Biol, 7, 238, 10.1016/S1367-5931(03)00027-9
M Kanehisa, 2000, KEGG: Kyoto Encyclopedia of Genes and Genomes., Nucleic Acids Res, 28, 27, 10.1093/nar/28.1.27
O Revelles, 2005, Multiple and interconnected pathways for <sc>l</sc>-lysine catabolism in <italic>Pseudomonas putida</italic> KT2440., J Bacteriol, 187, 7500, 10.1128/JB.187.21.7500-7510.2005
WA Duetz, 1996, Catabolite repression of the toluene degradation pathway in <italic>Pseudomonas putida</italic> harboring pWWO under various conditions of nutrient limitation in chemostat culture., Appl Environ Microbiol, 62, 601, 10.1128/AEM.62.2.601-606.1996
T Pfeiffer, 2005, Game-theoretical approaches to studying the evolution of biochemical systems., Trends Biochem Sci, 30, 20, 10.1016/j.tibs.2004.11.006
S Schuster, 2008, Is maximization of molar yield in metabolic networks favoured by evolution?, J Theor Biol, 252, 497, 10.1016/j.jtbi.2007.12.008
J Pramanik, 1998, Effect of <italic>Escherichia coli</italic> biomass composition on central metabolic fluxes predicted by a stoichiometric model., Biotechnol Bioeng, 60, 230, 10.1002/(SICI)1097-0290(19981020)60:2<230::AID-BIT10>3.0.CO;2-Q
R Mahadevan, 2003, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models., Metab Eng, 5, 264, 10.1016/j.ymben.2003.09.002
JB Russell, 1995, Energetics of bacterial growth: balance of anabolic and catabolic reactions., Microbiol Rev, 59, 48, 10.1128/MMBR.59.1.48-62.1995
WP Hempfling, 1975, Effects of varying carbon source limiting growth on yield and maintenance characteristics of <italic>Escherichia coli</italic> in continuous culture., J Bacteriol, 123, 1076, 10.1128/JB.123.3.1076-1087.1975
SE Mainzer, 1976, Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of <italic>Escherichia coli</italic>., J Bacteriol, 126, 251, 10.1128/JB.126.1.251-256.1976
S Isken, 1999, Effect of organic solvents on the yield of solvent-tolerant <italic>Pseudomonas putida</italic> S12., Appl Environ Microbiol, 65, 2631, 10.1128/AEM.65.6.2631-2635.1999
J Fieschko, 1984, Statistical analysis in the estimation of maintenance and true growth yield coefficients., Biotechnol Bioeng, 26, 394, 10.1002/bit.260260420
G Bratbak, 1985, Bacterial biovolume and biomass estimations., Appl Environ Microbiol, 49, 1488, 10.1128/AEM.49.6.1488-1493.1985
AP Burgard, 2004, Flux coupling analysis of genome-scale metabolic network reconstructions., Genome Res, 14, 301, 10.1101/gr.1926504
T Fuhrer, 2005, Experimental identification and quantification of glucose metabolism in seven bacterial species., J Bacteriol, 187, 1581, 10.1128/JB.187.5.1581-1590.2005
T del Castillo, 2007, Convergent peripheral pathways catalyze initial glucose catabolism in <italic>Pseudomonas putida</italic>: genomic and flux analysis., J Bacteriol, 189, 5142, 10.1128/JB.00203-07
AJ Cozzone, 1998, Regulation of acetate metabolism by protein phosphorylation in enteric bacteria., Annu Rev Microbiol, 52, 127, 10.1146/annurev.micro.52.1.127
B Teusink, 2006, Analysis of growth of <italic>Lactobacillus plantarum</italic> WCFS1 on a complex medium using a genome-scale metabolic model., J Biol Chem, 281, 40041, 10.1074/jbc.M606263200
R Schuetz, 2007, Systematic evaluation of objective functions for predicting intracellular fluxes in <italic>Escherichia coli</italic>., Mol Syst Biol, 3, 119, 10.1038/msb4100162
C Pal, 2006, Chance and necessity in the evolution of minimal metabolic networks., Nature, 440, 667, 10.1038/nature04568
PR Jensen, 1992, Carbon and energy metabolism of atp mutants of <italic>Escherichia coli</italic>., J Bacteriol, 174, 7635, 10.1128/jb.174.23.7635-7641.1992
K von Meyenburg, 1982, Promoters of the atp operon coding for the membrane-bound ATP synthase of <italic>Escherichia coli</italic> mapped by Tn10 insertion mutations., Mol Gen Genet, 188, 240, 10.1007/BF00332682
HL Kornberg, 1966, Role and control of glyoxylate cycle in <italic>Escherichia coli</italic>., Biochem J, 99, 1, 10.1042/bj0990001
E Fischer, 2005, Large-scale in vivo flux analysis shows rigidity and suboptimal performance of <italic>Bacillus subtilis</italic> metabolism., Nat Genet, 37, 636, 10.1038/ng1555
YK Oh, 2007, Genome-scale reconstruction of metabolic network in <italic>Bacillus subtilis</italic> based on high-throughput phenotyping and gene essentiality data., J Biol Chem, 282, 28791, 10.1074/jbc.M703759200
MA Oberhardt, 2008, Genome-scale metabolic network analysis of the opportunistic pathogen <italic>Pseudomonas aeruginosa</italic> PAO1., J Bacteriol, 190, 2790, 10.1128/JB.01583-07
A Steinbuchel, 2001, Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example., Macromol Biosci, 1, 1, 10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B
G Giavaresi, 2004, New polymers for drug delivery systems in orthopaedics: in vivo biocompatibility evaluation., Biomed Pharmacother, 58, 411, 10.1016/S0753-3322(04)00111-8
GAM van der Walle, 2001, Properties, modifications and applications of biopolyesters., Adv Biochem Eng Biotechnol, 71, 263
S Klinke, 2000, Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in <italic>Pseudomonas putida</italic>., Appl Environ Microbiol, 66, 909, 10.1128/AEM.66.3.909-913.2000
KR Patil, 2004, Use of genome-scale microbial models for metabolic engineering., Curr Opin Biotechnol, 15, 64, 10.1016/j.copbio.2003.11.003
N Jamshidi, 2008, Formulating genome-scale kinetic models in the post-genome era., Mol Syst Biol, 4, 171, 10.1038/msb.2008.8
AR Joyce, 2006, The model organism as a system: integrating ‘omics’ data sets., Nat Rev Mol Cell Biol, 7, 198, 10.1038/nrm1857
S Seker, 1997, Multi-substrate growth kinetics of <italic>Pseudomonas putida</italic> for phenol removal., Appl Microbiol Biotechnol, 47, 610, 10.1007/s002530050982
A Kumar, 2005, Biodegradation kinetics of phenol and catechol using <italic>Pseudomonas putida</italic> MTCC 1194., Biochem Eng J, 22, 151, 10.1016/j.bej.2004.09.006
SJ Wang, 2001, Biotransformation kinetics of <italic>Pseudomonas putida</italic> for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate., Biodegradation, 12, 189, 10.1023/A:1013170322269
T Abuhamed, 2004, Kinetics model for growth of <italic>Pseudomonas putida</italic> F1 during benzene, toluene and phenol biodegradation., Process Biochem, 39, 983, 10.1016/S0032-9592(03)00210-3
JS Edwards, 2000, Metabolic flux balance analysis and the <italic>in silico</italic> analysis of <italic>Escherichia coli</italic> K-12 gene deletions., BMC Bioinformatics, 1, 1, 10.1186/1471-2105-1-1
PA Vanrolleghem, 1998, A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients., Biotechnol Bioeng, 58, 133, 10.1002/(SICI)1097-0290(19980420)58:2/3<133::AID-BIT4>3.0.CO;2-M
A Varma, 1993, Metabolic capabilities of Escherichia-Coli .1. Synthesis of biosynthetic precursors and cofactors., J Theor Biol, 165, 477, 10.1006/jtbi.1993.1202
JM Lee, 2006, Flux balance analysis in the era of metabolomics., Brief Bioinform, 7, 140, 10.1093/bib/bbl007
JS Edwards, 2000, The <italic>Escherichia coli</italic> MG1655 <italic>in silico</italic> metabolic genotype: Its definition, characteristics, and capabilities., Proc Natl Acad Sci U S A, 97, 5528, 10.1073/pnas.97.10.5528
S Schuster, 2000, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks., Nature Biotechnology, 18, 326, 10.1038/73786
JL Reed, 2004, Genome-scale <italic>in silico</italic> models of E-coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states., Genome Res, 14, 1797, 10.1101/gr.2546004
HPJ Bonarius, 1997, Flux analysis of underdetermined metabolic networks: the quest for the missing constraints., Trends Biotechnol, 15, 308, 10.1016/S0167-7799(97)01067-6
M Kanehisa, 2006, From genomics to chemical genomics: new developments in KEGG., Nucleic Acids Res, 34, D354, 10.1093/nar/gkj102
GL Winsor, 2005, <italic>Pseudomonas aeruginosa</italic> Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation., Nucleic Acids Res, 33, D338, 10.1093/nar/gki047
I Schomburg, 2002, BRENDA, enzyme data and metabolic information., Nucleic Acids Res, 30, 47, 10.1093/nar/30.1.47
G Caetano-Anolles, 1993, Amplifying DNA with arbitrary oligonucleotide primers., Genome Res, 3, 85, 10.1101/gr.3.2.85
GA O'Toole, 1998, Initiation of biofilm formation in <italic>Pseudomonas fluorescens</italic> WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis., Mol Microbiol, 28, 449, 10.1046/j.1365-2958.1998.00797.x
F Sanger, 1977, DNA sequencing with chain-terminating inhibitors., Proc Natl Acad Sci U S A, 74, 5463, 10.1073/pnas.74.12.5463