Biochemical Characterization of a Type III Polyketide Biosynthetic Gene Cluster from Streptomyces toxytricini
Tóm tắt
A type III polyketide biosynthetic gene cluster has been discovered in the industrially important strain Streptomyces toxytricini NRRL 15443, including four genes stp450-1, stts, stp450-2, and stmo. The stts gene encodes a putative type III polyketide synthase that is homologous to RppA, a 1,3,6,8-tetrahydroxynaphthalene (THN) synthase from Streptomyces griseus. The deduced protein product of stmo resembles the cupin-containing monooxygenase MomA from Streptomyces antibioticus that oxidizes THN into flaviolin. Two cytochrome P450s (CYPs), StP450-1 and StP450-2, are present in the gene cluster. StTS was overexpressed in Escherichia coli BL21(DE3) and identified as a THN synthase. The synthesized THN can be easily oxidized into flaviolin by air. Both CYPs were reconstituted in E. coli BL21(DE3) and can oxidize flaviolin to form oligomers. The k
cat/K
m values for StP450-1 and StP450-2 were 0.28 and 0.71 min−1 mM−1, respectively. UV irradiation test showed that expression of StTS in E. coli BL21(DE3) significantly protects the cells from UV radiation, and coexpression of StTS and StP450-1 provides even stronger protection.
Tài liệu tham khảo
Staunton, J., & Weissman, K. J. (2001). Natural Product Reports, 18, 380–416.
Zhan, J. (2009). Current Topics in Medicinal Chemistry, 9, 1958–1610.
Austin, M. B., & Noel, A. J. P. (2003). Natural Product Reports, 20, 79–110.
Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y., & Horinouchi, S. (1999). Nature, 400, 897–899.
Funa, N., Ohnishi, Y., Ebizuka, Y., & Horinouchi, S. (2002). Journal of Biological Chemistry, 277, 4628–4635.
Cortes, J., Velasco, J., Foster, G., Blackaby, A. P., Rudd, B. A. M., & Wilkinson, B. (2002). Molecular Microbiology, 44, 1213–1224.
Li, S., Grüschow, S., Dordick, J. S., & Sherman, D. H. (2007). Journal of Biological Chemistry, 282, 12765–12772.
Gross, F., Luniak, N., Perlova, O., Gaitatzis, N., Jenke-Kodama, H., Gerth, K., Gottschalk, D., Dittmann, E., & Muller, R. (2006). Archives of Microbiology, 185, 28–38.
Harp, J. B. (1999). Drugs of Today, 35, 139–145.
Omura, T., & Sato, R. (1964). Journal of Biological Chemistry, 239, 2370–2378.
Davis, N. K., & Chater, K. F. (1990). Molecular Microbiology, 4, 1679–1691.
Bergh, S., & Uhlén, M. (1992). Gene, 117, 131–136.
Winter, J. M., Moffitt, M. C., Zazopoulos, E., McAlpine, J. B., Dorrestein, P. C., & Moore, B. S. (2007). Journal of Biological Chemistry, 282, 16362–16368.
Snyder, S. A., Tang, Z. Y., & Gupta, R. (2009). Journal of the American Chemical Society, 131, 5744–5745.
Zhao, B., Lamb, D. C., Lei, L., Kelly, S. L., Yuan, H., Hachey, D. L., & Waterman, M. R. (2007). Biochemistry, 46, 8725–8733.
Zhao, B., Guengerich, F. P., Bellamine, A., Lamb, D. C., Izumikawa, M., Lei, L., Podust, L. M., Sundaramoorthy, M., Kalaitzis, J. A., Reddy, L. M., Kelly, S. L., Moore, B. S., Stec, D., Voehler, M., Falck, J. R., Shimada, T., & Waterman, M. R. (2005). Journal of Biological Chemistry, 280, 11599–11607.
Funa, N., Funabashi, M., Ohnishi, Y., & Horinouchi, S. (2005). Journal of Bacteriology, 187, 8149–8155.