Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

PLoS ONE - Tập 9 Số 11 - Trang e110038
Lumeng Ye1, Falk Hildebrand1, Jozef Dingemans1, Steven Ballet2, George Laus2, Sandra Matthijs3, Roeland L. Berendsen4, Pierre Cornélis1
1Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
2Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
3Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, Brussels, Belgium
4Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

KE Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile <italic>Pseudomonas putida</italic> KT2440, Environ Microbiol, 4, 799, 10.1046/j.1462-2920.2002.00366.x

A Rojas, 2001, Three efflux pumps are required to provide efficient tolerance to toluene in <italic>Pseudomonas putida</italic> DOT-T1E, J Bacteriol, 183, 3967, 10.1128/JB.183.13.3967-3973.2001

A Roca, 2013, Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium <italic>Pseudomonas putida</italic> BIRD-1, Environ Microbiol, 15, 780, 10.1111/1462-2920.12037

JL Ramos, 1998, Efflux pumps involved in toluene tolerance in <italic>Pseudomonas putida</italic> DOT-T1E, J Bacteriol, 180, 3323, 10.1128/JB.180.13.3323-3329.1998

MA Matilla, 2010, <italic>Pseudomonas putida</italic> KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation, Environ Microbiol Rep, 2, 381, 10.1111/j.1758-2229.2009.00091.x

M Espinosa-Urgel, 2004, Cell density-dependent gene contributes to efficient seed colonization by <italic>Pseudomonas putida</italic> KT2440, Appl Environ Microbiol, 70, 5190, 10.1128/AEM.70.9.5190-5198.2004

M Espinosa-Urgel, 2002, Root colonization by <italic>Pseudomonas putida</italic>: love at first sight, Microbiology, 148, 341, 10.1099/00221287-148-2-341

H Gross, 2009, Genomics of secondary metabolite production by <italic>Pseudomonas</italic> spp, Nat Prop Rep, 26, 1408, 10.1039/b817075b

JE Loper, 2008, Isolation and identification of rhizoxin analogs from <italic>Pseudomonas fluorescens</italic> Pf-5 by using a genomic mining strategy, Appl Environ Microbiol, 74, 3085, 10.1128/AEM.02848-07

M Mulet, 2010, DNA sequence-based analysis of the <italic>Pseudomonas</italic> species, Environ Microbiol, 12, 1513, 10.1111/j.1462-2920.2010.02181.x

JP Pirnay, 2005, Global <italic>Pseudomonas aeruginosa</italic> biodiversity as reflected in a Belgian river, Environ Microbiol, 7, 969, 10.1111/j.1462-2920.2005.00776.x

L Ye, 2013, A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a <italic>Pseudomonas putida</italic> isolate and the use of pyoverdine as a taxonomic marker for typing <italic>P. putida</italic> subspecies, Biometals, 26, 561, 10.1007/s10534-013-9653-z

S Matthijs, 2009, Siderophore-mediated iron acquisition in the entomopathogenic bacterium <italic>Pseudomonas entomophila</italic> L48 and its close relative <italic>Pseudomonas putida</italic> KT2440, Biometals, 22, 951, 10.1007/s10534-009-9247-y

DR Zerbino, 2008, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, 18, 821, 10.1101/gr.074492.107

RK Aziz, 2008, The RAST Server: rapid annotations using subsystems technology, BMC Genomics, 9, 75, 10.1186/1471-2164-9-75

MH Medema, 2011, antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences, Nucleic Acids Res, 39, W339, 10.1093/nar/gkr466

K Blin, 2013, antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers, Nucleic Acids Res, 41, W204, 10.1093/nar/gkt449

T Stachelhaus, 1999, The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chem Biol, 6, 493, 10.1016/S1074-5521(99)80082-9

JR Grant, 2008, The CGView Server: a comparative genomics tool for circular genomes, Nucleic Acids Res, 36, W181, 10.1093/nar/gkn179

MG Langille, 2009, IslandViewer: an integrated interface for computational identification and visualization of genomic islands, Bioinformatics, 25, 664, 10.1093/bioinformatics/btp030

I Grissa, 2007, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res, 35, W52, 10.1093/nar/gkm360

JJ Dennis, 1998, Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes, Appl Environ Microbiol, 64, 2710, 10.1128/AEM.64.7.2710-2715.1998

RM Shanks, 2009, New yeast recombineering tools for bacteria, Plasmid, 62, 88, 10.1016/j.plasmid.2009.05.002

M Richter, 2009, Shifting the genomic gold standard for the prokaryotic species definition, Proc Natl Acad Sci USA, 106, 19126, 10.1073/pnas.0906412106

SL Hartney, 2013, Ferric-pyoverdine recognition by Fpv outer membrane proteins of <italic>Pseudomonas protegens</italic> Pf-5, J Bacteriol, 195, 765, 10.1128/JB.01639-12

M Mulet, 2013, Phylogenetic affiliation of <italic>Pseudomonas putida</italic> biovar A and B strains, Res Microbiol, 164, 351, 10.1016/j.resmic.2013.01.009

L Molina, 2013, Complete genome sequence of a <italic>Pseudomonas putida</italic> clinical isolate, strain H8234, Genome, A1, 00496

S Ohji, 2014, The complete genome sequence of <italic>Pseudomonas putida</italic> NBRC 14164T confirms high intraspecies variation, Genome A, 2, 00029

IJ Schalk, 2013, Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways, Amino Acids, 44, 1267, 10.1007/s00726-013-1468-2

P Visca, 2007, Pyoverdine siderophores: from biogenesis to biosignificance, Trends Microbiol, 15, 22, 10.1016/j.tim.2006.11.004

J Ravel, 2003, Genomics of pyoverdine-mediated iron uptake in pseudomonads, Trends Microbiol, 11, 195, 10.1016/S0966-842X(03)00076-3

P Cornelis, 2010, Iron uptake and metabolism in pseudomonads, Appl Microbiol Biotechnol, 86, 1637, 10.1007/s00253-010-2550-2

L Ye, 2014, Analysis of the draft genome of <italic>Pseudomonas fluorescens</italic> ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines, Biometals, 27, 633, 10.1007/s10534-014-9734-7

JF Dubern, 2006, Influence of environmental conditions on putisolvins I and II production in <italic>Pseudomonas putida</italic> strain PCL1445, FEMS Microbiol Lett, 263, 169, 10.1111/j.1574-6968.2006.00406.x

JF Dubern, 2006, The <italic>ppuI-rsaL-ppuR</italic> quorum-sensing system regulates biofilm formation of <italic>Pseudomonas putida</italic> PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II, J Bacteriol, 188, 2898, 10.1128/JB.188.8.2898-2906.2006

JF Dubern, 2008, Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in <italic>Pseudomonas putida</italic> strain PCL1445, Microbiology, 154, 2070, 10.1099/mic.0.2008/016444-0

I Kuiper, 2004, Characterization of two <italic>Pseudomonas putida</italic> lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms, Mol Microbiol, 51, 97, 10.1046/j.1365-2958.2003.03751.x

W Li, 2013, The antimicrobial compound xantholysin defines a new group of <italic>Pseudomonas</italic> cyclic lipopeptides, PloS one, 8, e62946, 10.1371/journal.pone.0062946

H Rokni-Zadeh, 2013, Distinct lipopeptide production systems for WLIP (white line-inducing principle) in <italic>Pseudomonas fluorescens</italic> and <italic>Pseudomonas putida</italic>, Environ Microbiol Rep, 5, 160, 10.1111/1758-2229.12015

D Mossialos, 2002, Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine, Mol Microbiol, 45, 1673, 10.1046/j.1365-2958.2002.03120.x

AT Yeung, 2011, The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in <italic>Pseudomonas aeruginosa</italic>, J Bacteriol, 193, 918, 10.1128/JB.00911-10

W Chen, 2010, Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis, Protein & cell, 1, 1093, 10.1007/s13238-010-0127-6

J Gao, 2012, Draft genome sequence of high-siderophore-yielding <italic>Pseudomonas</italic> sp. strain HYS, J Bacteriol, 194, 4121, 10.1128/JB.00688-12

AK El-Sayed, 2003, Characterization of the mupirocin biosynthesis gene cluster from <italic>Pseudomonas fluorescens</italic> NCIMB 10586, Chem Biol, 10, 419, 10.1016/S1074-5521(03)00091-7

A Iqbal, 2011, Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates, Org Biomol Chem, 9, 6219, 10.1039/c1ob05554b

RP Garg, 2002, Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin, Mol Microbiol, 46, 505, 10.1046/j.1365-2958.2002.03169.x

A Velasco, 2005, Molecular characterization of the safracin biosynthetic pathway from <italic>Pseudomonas fluorescens</italic> A2-2: designing new cytotoxic compounds, Mol Microbiol, 56, 144, 10.1111/j.1365-2958.2004.04433.x

W Jin, 2003, Synthetic studies on ecteinascidin-743: constructing a versatile pentacyclic intermediate for the synthesis of ecteinascidins and saframycins, Org Lett, 5, 2095, 10.1021/ol034575n

GL Winsor, 2011, Pseudomonas Genome Database: improved comparative analysis and population genomics capability for <italic>Pseudomonas</italic> genomes, Nucleic Acids Res, 39, D596, 10.1093/nar/gkq869

SD Zink, 2002, The Dot/Icm type IV secretion system of <italic>Legionella pneumophila</italic> is essential for the induction of apoptosis in human macrophages, Infect Immun, 70, 1657, 10.1128/IAI.70.3.1657-1663.2002

Y Michel-Briand, 2002, The pyocins of <italic>Pseudomonas aeruginosa</italic>, Biochimie, 84, 499, 10.1016/S0300-9084(02)01422-0

E Cascales, 2007, Colicin biology, Microbiol Mol Biol Rev, 71, 158, 10.1128/MMBR.00036-06

CN Penfold, 2012, How bugs kill bugs: progress and challenges in bacteriocin research, Biochem Soc Trans, 40, 1433, 10.1042/BST20120253

AH Parret, 2002, Bacteria killing their own kind: novel bacteriocins of <italic>Pseudomonas</italic> and other gamma-proteobacteria, Trends Microbiol, 10, 107, 10.1016/S0966-842X(02)02307-7

NJ Palleroni, 2010, The Pseudomonas story, Environ Microbiol, 12, 1377, 10.1111/j.1462-2920.2009.02041.x

M Mulet, 2013, Phylogenetic affiliation of <italic>Pseudomonas putida</italic> biovar A and B strains, Res Microbiol, 164, 351, 10.1016/j.resmic.2013.01.009

JE Loper, 2012, Comparative genomics of plant-associated <italic>Pseudomonas</italic> spp: insights into diversity and inheritance of traits involved in multitrophic interactions, PLoS Genet, 8, e1002784, 10.1371/journal.pgen.1002784

NC Kyrpides, 2014, Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains, PLoS Biol, 12, e1001920, 10.1371/journal.pbio.1001920

L Guillon, 2012, High cellular organization of pyoverdine biosynthesis in <italic>Pseudomonas aeruginosa</italic>: clustering of PvdA at the old cell pole, Environ Microbiol, 14, 1982, 10.1111/j.1462-2920.2012.02741.x

IJ Schalk, 2013, Pyoverdine biosynthesis and secretion in <italic>Pseudomonas aeruginosa</italic>: implications for metal homeostasis, Environ Microbiol, 15, 1661, 10.1111/1462-2920.12013

L Guillon, 2013, Deciphering protein dynamics of the siderophore pyoverdine pathway in <italic>Pseudomonas aeruginosa</italic>, PloS One, 8, e79111, 10.1371/journal.pone.0079111