Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin

Journal of Proteomics - Tập 109 - Trang 212-227 - 2014
Oliver Simon1, Iris Klaiber2, Armin Huber1,2, Jens Pfannstiel2
1Department of Biosensorics, Institute of Physiology, University of Hohenheim, August von Hartmann-Str. 3, 70599 Stuttgart, Germany
2Proteomics Core Facility of the Life Science Center, University of Hohenheim, August von Hartmann-Str. 3, 70599 Stuttgart, Germany

Tài liệu tham khảo

Walton, 2003, Vanillin, Phytochemistry, 63, 505, 10.1016/S0031-9422(03)00149-3 Priefert, 2001, Biotechnological production of vanillin, Appl Microbiol Biotechnol, 56, 296, 10.1007/s002530100687 Ramachandra Rao, 2000, Vanilla flavour: production by conventional and biotechnological routes, J Sci Food Agric, 80, 289, 10.1002/1097-0010(200002)80:3<289::AID-JSFA543>3.0.CO;2-2 Krings, 1998, Biotechnological production of flavours and fragrances, Appl Microbiol Biotechnol, 49, 1, 10.1007/s002530051129 Kaur, 2013, Biotechnological and molecular approaches for vanillin production: a review, Appl Biochem Biotechnol, 169, 1353, 10.1007/s12010-012-0066-1 European Commission, 2008 Ramos, 2002, Mechanisms of solvent tolerance in gram-negative bacteria, Annu Rev Microbiol, 56, 743, 10.1146/annurev.micro.56.012302.161038 Santos, 2004, Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics, Proteomics, 4, 2640, 10.1002/pmic.200300793 Segura, 2005, Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene, J Bacteriol, 187, 5937, 10.1128/JB.187.17.5937-5945.2005 Kurbatov, 2006, Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy, Environ Microbiol, 8, 466, 10.1111/j.1462-2920.2005.00913.x Wijte, 2011, Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12, J Proteome Res, 10, 394, 10.1021/pr100401n Roma-Rodrigues, 2010, Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome, J Proteomics, 73, 1461, 10.1016/j.jprot.2010.02.003 Dominguez-Cuevas, 2006, Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene, J Biol Chem, 281, 11981, 10.1074/jbc.M509848200 Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Environ Microbiol, 4, 824, 10.1046/j.1462-2920.2002.00370.x Kim, 2006, Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis, Proteomics, 6, 1301, 10.1002/pmic.200500329 Yun, 2011, Proteomic characterization of the Pseudomonas putida KT2440 global response to a monocyclic aromatic compound by iTRAQ analysis and 1DE-MudPIT, J Proteomics, 74, 620, 10.1016/j.jprot.2011.01.020 Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ Microbiol, 4, 799, 10.1046/j.1462-2920.2002.00366.x Overhage, 1999, Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene, Appl Microbiol Biotechnol, 52, 820, 10.1007/s002530051598 Plaggenborg, 2003, Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440, Appl Microbiol Biotechnol, 61, 528, 10.1007/s00253-003-1260-4 Di Gioia, 2010, Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid, J Biotechnol, 156, 309, 10.1016/j.jbiotec.2011.08.014 Priefert, 1999, Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199, Arch Microbiol, 172, 354, 10.1007/s002030050772 Priefert, 1997, Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate, J Bacteriol, 179, 2595, 10.1128/jb.179.8.2595-2607.1997 Overhage, 1999, Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199, Appl Environ Microbiol, 65, 4837, 10.1128/AEM.65.11.4837-4847.1999 Rezaul, 2005, A systematic characterization of mitochondrial proteome from human T leukemia cells, Mol Cell Proteomics, 4, 169, 10.1074/mcp.M400115-MCP200 Muckschel, 2012, Ethylene glycol metabolism by Pseudomonas putida, Appl Environ Microbiol, 78, 8531, 10.1128/AEM.02062-12 Graf, 2014, Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid, Appl Microbiol Biotechnol, 98, 137, 10.1007/s00253-013-5303-1 Graf, 2011, Development of a method for markerless gene deletion in Pseudomonas putida, Appl Environ Microbiol, 77, 5549, 10.1128/AEM.05055-11 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, 72, 248, 10.1016/0003-2697(76)90527-3 Chevallet, 2008, Sweet silver: a formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry, Proteomics, 8, 4853, 10.1002/pmic.200800321 Shevchenko, 1996, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, 68, 850, 10.1021/ac950914h Olsen, 2005, Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap, Mol Cell Proteomics, 4, 2010, 10.1074/mcp.T500030-MCP200 Keller, 2002, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, 74, 5383, 10.1021/ac025747h Nesvizhskii, 2003, A statistical model for identifying proteins by tandem mass spectrometry, Anal Chem, 75, 4646, 10.1021/ac0341261 Winsor, 2011, Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res, 39, D596, 10.1093/nar/gkq869 Hauck, 2010, Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry, Mol Cell Proteomics, 9, 2292, 10.1074/mcp.M110.001073 Azimzadeh, 2012, Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation, J Proteomics, 75, 2384, 10.1016/j.jprot.2012.02.019 Wang, 2011, A survey of the cellular responses in Pseudomonas putida KT2440 growing in sterilized soil by microarray analysis, FEMS Microbiol Ecol, 78, 220, 10.1111/j.1574-6941.2011.01146.x del Castillo, 2007, Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis, J Bacteriol, 189, 5142, 10.1128/JB.00203-07 Volkers, 2006, Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12, Environ Microbiol, 8, 1674, 10.1111/j.1462-2920.2006.01056.x Mercenier, 1980, Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa, J Bacteriol, 144, 159, 10.1128/jb.144.1.159-163.1980 Segura, 2012, Solvent tolerance in Gram-negative bacteria, Curr Opin Biotechnol, 23, 415, 10.1016/j.copbio.2011.11.015 Maseda, 2002, A novel assembly process of the multicomponent xenobiotic efflux pump in Pseudomonas aeruginosa, Mol Microbiol, 46, 677, 10.1046/j.1365-2958.2002.03197.x Kohler, 1997, Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa, Mol Microbiol, 23, 345, 10.1046/j.1365-2958.1997.2281594.x Fernandez, 2009, Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene, Microbiol Biotechnol, 2, 287, 10.1111/j.1751-7915.2009.00085.x Roca, 2008, Physiological responses of Pseudomonas putida to formaldehyde during detoxification, Microbiol Biotechnol, 1, 158, 10.1111/j.1751-7915.2007.00014.x Heipieper, 2003, The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism, FEMS Microbiol Lett, 229, 1, 10.1016/S0378-1097(03)00792-4 Lathe, 2000, Gene context conservation of a higher order than operons, Trends Biochem Sci, 25, 474, 10.1016/S0968-0004(00)01663-7 Tamber, 2006, Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa, J Bacteriol, 188, 45, 10.1128/JB.188.1.45-54.2006 Junker, 1999, Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E, J Bacteriol, 181, 5693, 10.1128/JB.181.18.5693-5700.1999 Heipieper, 1992, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity, Appl Environ Microbiol, 58, 1847, 10.1128/aem.58.6.1847-1852.1992 Chang, 1999, Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli, Mol Microbiol, 33, 249, 10.1046/j.1365-2958.1999.01456.x Munoz-Rojas, 2006, Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying, Appl Environ Microbiol, 72, 472, 10.1128/AEM.72.1.472-477.2006 Pini, 2009, Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E, Microbiol Biotechnol, 2, 253, 10.1111/j.1751-7915.2009.00084.x Zhao, 2003, Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824, Appl Environ Microbiol, 69, 2831, 10.1128/AEM.69.5.2831-2841.2003 Cao, 2008, Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach, Biotechnol Bioeng, 101, 1297, 10.1002/bit.21997 Kempf, 1998, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments, Arch Microbiol, 170, 319, 10.1007/s002030050649 Isken, 1998, Bacteria tolerant to organic solvents, Extremophiles, 2, 229, 10.1007/s007920050065 Arguelles, 2000, Physiological roles of trehalose in bacteria and yeasts: a comparative analysis, Arch Microbiol, 174, 217, 10.1007/s002030000192 Freeman, 2010, Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere, Environ Microbiol, 12, 1486 Joo, 2000, Intracellular changes of trehalose content in toluene tolerant Pseudomonas sp. BCNU 171 after exposure to toluene, Biotechnol Lett, 22, 1021, 10.1023/A:1005609925024 Hare, 2012, Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin, J Proteome Res, 11, 776, 10.1021/pr200659h Megger, 1834, Label-free quantification in clinical proteomics, Biochim Biophys Acta, 2013, 1581 Hebert, 2014, The one hour yeast proteome, Mol Cell Proteomics, 13, 339, 10.1074/mcp.M113.034769 Nagaraj, 2012, System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap, Mol Cell Proteomics, 11, 10.1074/mcp.M111.013722