Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting

Nature Biotechnology - Tập 30 Số 5 - Trang 440-446 - 2012
Jun Fu1, Xiaoying Bian2, Shengbaio Hu1, Hailong Wang1, Fan Huang1, Philipp Martin Seibert1, Alberto Plaza2, Liqiu Xia3, Rolf Müller2, A. Francis Stewart1, Youming Zhang4
1Technische Universitaet Dresden, Genomics, BioInnovationsZentrum, Dresden, Germany
2Department of Pharmaceutical Biotechnology, Helmholtz Institut für Pharmazeutische Forschung, Helmholtz Zentrum für Infektionsforschung and Universität des Saarlandes, Saarbrücken, Germany
3Key Laboratory of Microbial Molecular Biology of Hunan Province, College of Life Science, Hunan Normal University, Changsha, Hunan Province, People's Republic of China
4Gene Bridges, University Campus, Saarbrücken, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bode, H.B. & Müller, R. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Ed. Engl. 44, 6828–6846 (2005).

Koonin, E.V. & Wolf, Y.I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36, 6688–6719 (2008).

Lagesen, K., Ussery, D.W. & Wassenaar, T.M. Genome update: the 1000th genome–a cautionary tale. Microbiology 156, 603–608 (2010).

Banik, J.J. & Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 13, 603–609 (2010).

Simon, C. & Daniel, R. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).

Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Edn Engl. 48, 4688–4716 (2009).

Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

Zhumabayeva, B., Chenchik, A. & Siebert, P.D. RecA-mediated affinity capture: a method for full-length cDNA cloning. Biotechniques 27, 834 (1999).

Demidov, V.V. et al. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc. Natl. Acad. Sci. USA 99, 5953–5958 (2002).

Ito, T., Smith, C.L. & Cantor, C.R. Sequence-specific DNA purification by triplex affinity capture. Proc. Natl. Acad. Sci. USA 89, 495–498 (1992).

Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

Zhang, Y., Muyrers, J.P.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

Yonemura, I. et al. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene 391, 171–177 (2007).

Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, F.A. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

Muyrers, J.P.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

Muyrers, J.P., Zhang, Y., Buchholz, F. & Stewart, A.F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 (2000).

Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

Wang, J. et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

Fu, J., Teucher, M., Anastassiadis, K., Skarnes, W. & Stewart, A.F. A recombineering pipeline to make conditional targeting constructs. Methods Enzymol. 477, 125–144 (2010).

Kovall, R. & Matthews, B.W. Toroidal structure of lambda-exonuclease. Science 277, 1824–1827 (1997).

Chu, C.C., Templin, A. & Clark, A.J. Suppression of a frameshift mutation in the recE gene of Escherichia coli K-12 occurs by gene fusion. J. Bacteriol. 171, 2101–2109 (1989).

Zhang, J.J., Xing, X., Herr, A.B. & Bell, C.E. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17, 690–702 (2009).

Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–1313 (2003).

Maresca, M. et al. Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol. Biol. 11, 54 (2010).

Murphy, K.C. The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J. Mol. Biol. 371, 19–24 (2007).

Court, R., Cook, N., Saikrishnan, K. & Wigley, D. The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J. Mol. Biol. 371, 25–33 (2007).

Zhang, Y., Muyrers, J.P., Rientjes, J. & Stewart, A.F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol. 4, 1 (2003).

Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

Mosberg, J.A., Lajoie, M.J. & Church, G.M. Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

Poteete, A.R. Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol. Microbiol. 68, 66–74 (2008).

Ellis, H.M., Yu, D.G., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

Bowen, D. et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132 (1998).

Waterfield, N.R. et al. Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc. Natl. Acad. Sci. USA 105, 15967–15972 (2008).

Homburg, S., Oswald, E., Hacker, J. & Dobrindt, U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol. Lett. 275, 255–262 (2007).

Gaitatzis, N., Hans, A., Müller, R. & Beyer, S. The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3–1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J. Biochem. 129, 119–124 (2001).

Amrein, H. et al. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 17, 90–97 (2004).

Schellenberg, B., Bigler, L. & Dudler, R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9, 1640–1650 (2007).

Oka, M. et al. Glidobactin-A, glidobactin-B and glidobactin-C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. 41, 1338–1350 (1988).

Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

Iyer, L.M., Koonin, E.V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

Erler, A. et al. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391, 586–598 (2009).

Yamamoto, T., Moerschell, R.P., Wakem, L.P., Komarpanicucci, S. & Sherman, F. Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131, 811–819 (1992).

Swingle, B. et al. Oligonucleotide recombination in Gram-negative bacteria. Mol. Microbiol. 75, 138–148 (2010).

Craig, J.W., Chang, F.Y., Kim, J.H., Obiajulu, S.C. & Brady, S.F. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76, 1633–1641 (2010).

Wenzel, S.C. et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem. Biol. 12, 349–356 (2005).

Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008).

Bachmann, B.O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32, W405–W413 (2004).

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

Del Vecchio, F. et al. Active-site residue, domain and module swaps in modular polyketide synthases. J. Ind. Microbiol. Biotechnol. 30, 489–494 (2003).

Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

Larkin, M.A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).