Existence and Uniqueness of Local Weak Solution of D-Dimensional Fractional Micropolar Rayleigh-Bénard Convection System Without Thermal Diffusion in Besov Space
Tóm tắt
This paper studies the existence and uniqueness of local weak solutions to the d-dimensional (
$d\ge 2$
) fractional micropolar Rayleigh-Bénard convection system without thermal diffusion. When the fractional dissipation index
$1\leq \alpha <1+\frac{d}{4}$
, any initial data
$(u_{0},\omega _{0})\in B_{2,1}^{1+\frac{d}{2}-2\alpha}(\mathbb{R}^{d})$
and
$\theta _{0}\in B_{2,1}^{1+\frac{d}{2}-\alpha}(\mathbb{R}^{d})$
yield a local unique weak solution.
Tài liệu tham khảo
Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonliear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011)
Chen, Q.L., Miao, C.X.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012)
Deng, L.H., Shang, H.F.: Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation. Proc. R. Soc. Edinb., Sect. A (2021). https://doi.org/10.1017/prm.2021.48
Dong, B.Q., Zhang, Z.F.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differ. Equ. 249, 200–213 (2010)
Dong, B.Q., Li, J.N., Wu, J.H.: Global well-posedness and large-time decay for the 2D micropolar equations. J. Differ. Equ. 262, 3488–3523 (2017)
Dong, B.Q., Ye, Z., Zhai, X.P.: Global regularity for the 2D Boussinesq equations with temperature-dependent viscosity. J. Math. Fluid Mech. 22, 16pp (2020)
Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)
Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11, 939–967 (1987)
Jia, Y., Zhang, X.W., Zhang, W.L., Dong, B.Q.: Remarks on the regularity criteria of weak solutions to the three-dimensional micropolar fluid equations. Acta Math. Appl. Sin. Engl. Ser. 29, 869–880 (2013)
Jiu, Q.S., Suo, X.X., Wu, J.H., Yu, H.: Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation. Commun. Math. Sci. 18, 987–1022 (2020)
Kalita, P., Łukaszewicz, G.: Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers. Nonlinearity 33, 5686–5732 (2020)
Kalita, P., Lange, J., Łukaszewicz, G.: Micropolar meets Newtonian. The Rayleigh-Bénard problem. Physica D 392, 57–80 (2019)
Shang, H.F., Guo, M.Y.: Global regularity for the 2D micropolar Rayleigh-Bénard problem with partial dissipation. Appl. Math. Lett. 128, 107899 (2022)
Simon, J.: Compact sets in the space \(L^{p}(0,T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)
Tarasińska, A.: Global attractor for heat convection problem in a micropolar fluid. Math. Methods Appl. Sci. 29, 1215–1236 (2006)
Wang, S.: Global well-posedness for the 2D micropolar Rayleigh-Bénard convection problem without velocity dissipation. Acta Math. Sin. Engl. Ser. 37, 1053–1065 (2021)
Wu, J.H., Xu, X.J., Xue, L.T.: Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation. Commun. Math. Sci. 14, 1963–1997 (2016)
Xu, F.Y., Chi, M.L.: Global regularity for the 2D micropolar Rayleigh-Bénard convection system with the zero diffusivity. Appl. Math. Lett. 108, 106508 (2020)
Xu, F.Y., Qiao, L.N., Zhang, M.X.: On the well-posedness for the 2D micropolar Rayleigh-Bénard convection problem. Z. Angew. Math. Phys. 72, 13pp (2021)
Yang, W.R., Jiu, Q.S., Wu, J.H.: Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ. 257, 4188–4213 (2014)
Ye, Z.: Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation. Nonlinear Anal. 156, 111–143 (2017)
Ye, Z.: Global regularity results for the 2D Boussinesq equations and micropolar equations with partial dissipation. J. Differ. Equ. 268, 910–944 (2020)
Yuan, B.Q., Qiao, Y.Y.: Global regularity of 2D Leray-alpha regularized incompressible magneto-micropolar equations. J. Math. Anal. Appl. 474, 492–512 (2019)