Existence and Uniqueness of Local Weak Solution of D-Dimensional Fractional Micropolar Rayleigh-Bénard Convection System Without Thermal Diffusion in Besov Space
Tóm tắt
This paper studies the existence and uniqueness of local weak solutions to the d-dimensional (
$d\ge 2$
) fractional micropolar Rayleigh-Bénard convection system without thermal diffusion. When the fractional dissipation index
$1\leq \alpha <1+\frac{d}{4}$
, any initial data
$(u_{0},\omega _{0})\in B_{2,1}^{1+\frac{d}{2}-2\alpha}(\mathbb{R}^{d})$
and
$\theta _{0}\in B_{2,1}^{1+\frac{d}{2}-\alpha}(\mathbb{R}^{d})$
yield a local unique weak solution.