Existence and Uniqueness of Local Weak Solution of D-Dimensional Fractional Micropolar Rayleigh-Bénard Convection System Without Thermal Diffusion in Besov Space

Acta Applicandae Mathematicae - Tập 182 - Trang 1-22 - 2022
Baoquan Yuan1, Taotao Hou1
1School of Mathematics and Information Science, Henan Polytechnic University, Henan, China

Tóm tắt

This paper studies the existence and uniqueness of local weak solutions to the d-dimensional ( $d\ge 2$ ) fractional micropolar Rayleigh-Bénard convection system without thermal diffusion. When the fractional dissipation index $1\leq \alpha <1+\frac{d}{4}$ , any initial data $(u_{0},\omega _{0})\in B_{2,1}^{1+\frac{d}{2}-2\alpha}(\mathbb{R}^{d})$ and $\theta _{0}\in B_{2,1}^{1+\frac{d}{2}-\alpha}(\mathbb{R}^{d})$ yield a local unique weak solution.

Tài liệu tham khảo

Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonliear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011) Chen, Q.L., Miao, C.X.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012) Deng, L.H., Shang, H.F.: Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation. Proc. R. Soc. Edinb., Sect. A (2021). https://doi.org/10.1017/prm.2021.48 Dong, B.Q., Zhang, Z.F.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differ. Equ. 249, 200–213 (2010) Dong, B.Q., Li, J.N., Wu, J.H.: Global well-posedness and large-time decay for the 2D micropolar equations. J. Differ. Equ. 262, 3488–3523 (2017) Dong, B.Q., Ye, Z., Zhai, X.P.: Global regularity for the 2D Boussinesq equations with temperature-dependent viscosity. J. Math. Fluid Mech. 22, 16pp (2020) Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966) Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11, 939–967 (1987) Jia, Y., Zhang, X.W., Zhang, W.L., Dong, B.Q.: Remarks on the regularity criteria of weak solutions to the three-dimensional micropolar fluid equations. Acta Math. Appl. Sin. Engl. Ser. 29, 869–880 (2013) Jiu, Q.S., Suo, X.X., Wu, J.H., Yu, H.: Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation. Commun. Math. Sci. 18, 987–1022 (2020) Kalita, P., Łukaszewicz, G.: Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers. Nonlinearity 33, 5686–5732 (2020) Kalita, P., Lange, J., Łukaszewicz, G.: Micropolar meets Newtonian. The Rayleigh-Bénard problem. Physica D 392, 57–80 (2019) Shang, H.F., Guo, M.Y.: Global regularity for the 2D micropolar Rayleigh-Bénard problem with partial dissipation. Appl. Math. Lett. 128, 107899 (2022) Simon, J.: Compact sets in the space \(L^{p}(0,T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986) Tarasińska, A.: Global attractor for heat convection problem in a micropolar fluid. Math. Methods Appl. Sci. 29, 1215–1236 (2006) Wang, S.: Global well-posedness for the 2D micropolar Rayleigh-Bénard convection problem without velocity dissipation. Acta Math. Sin. Engl. Ser. 37, 1053–1065 (2021) Wu, J.H., Xu, X.J., Xue, L.T.: Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation. Commun. Math. Sci. 14, 1963–1997 (2016) Xu, F.Y., Chi, M.L.: Global regularity for the 2D micropolar Rayleigh-Bénard convection system with the zero diffusivity. Appl. Math. Lett. 108, 106508 (2020) Xu, F.Y., Qiao, L.N., Zhang, M.X.: On the well-posedness for the 2D micropolar Rayleigh-Bénard convection problem. Z. Angew. Math. Phys. 72, 13pp (2021) Yang, W.R., Jiu, Q.S., Wu, J.H.: Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ. 257, 4188–4213 (2014) Ye, Z.: Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation. Nonlinear Anal. 156, 111–143 (2017) Ye, Z.: Global regularity results for the 2D Boussinesq equations and micropolar equations with partial dissipation. J. Differ. Equ. 268, 910–944 (2020) Yuan, B.Q., Qiao, Y.Y.: Global regularity of 2D Leray-alpha regularized incompressible magneto-micropolar equations. J. Math. Anal. Appl. 474, 492–512 (2019)