Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation

Lihua Deng1, Haifeng Shang1
1School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454000, People’s Republic of China

Tóm tắt

This paper is concerned with the global regularity problem on the micropolar Rayleigh-Bénard problem with only velocity dissipation in$\mathbb {R}^{d}$with$d=2\ or\ 3$. By fully exploiting the special structure of the system, introducing two combined quantities and using the technique of Littlewood-Paley decomposition, we establish the global regularity of solutions to this system in$\mathbb {R}^{2}$. Moreover, we obtain the global regularity for fractional hyperviscosity case in$\mathbb {R}^{3}$by employing various techniques including energy methods, the regularization of generalized heat operators on the Fourier frequency localized functions and logarithmic Sobolev interpolation inequalities.

Từ khóa


Tài liệu tham khảo

10.1007/s00220-007-0193-7

10.1007/s00033-020-01454-x

10.1002/cpa.20253

Eringen, 1966, Theory of micropolar fluids, J. Math. Mech, 16, 1

10.1007/s00220-009-0821-5

Stewartson, 1957, On asymptotic expansions in the theory of boundary layers, Stud. Appl. Math, 36, 173

10.1016/j.aml.2012.12.019

10.1016/j.jde.2010.03.016

10.1002/mma.1491

10.1088/1361-6544/ab9729

Majda, 2002, Vorticity and incompressible flow

Yamazaki, 2017, Global regularity of generalized magnetic Benard problem, Math. Methods Appl. Sci, 40, 2013, 10.1002/mma.4116

Lions, 1969, Quelques méthodes de résolution des problèmes aux limites non linéaires

Temam, 1977, Navier-Stokes equations: theory and numerical analysis

10.1007/s00021-019-0444-3

10.1016/j.jde.2010.07.008

10.1007/978-3-0346-0419-2

10.1002/mma.720

Kalita, 2018, Rayleigh-Bénard problem for thermomicropolar fluids, Topol. Methods Nonlinear Anal, 52, 477

10.1016/j.anihpc.2015.12.006

10.1137/140958256

10.1016/j.jde.2011.09.035

10.1016/j.physa.2005.03.035

10.1002/cpa.3160410704

10.3934/dcds.2005.12.1

10.1142/S0219530519500234

10.1103/PhysRevLett.101.144501

10.1016/j.aim.2005.05.001

Navier, 1822, Mémoire sur les lois du mouvement des fluides, Mém. Acad. R. Sci. Inst. Fr, 6, 389

10.1007/978-3-642-66451-9

10.1016/j.na.2016.11.011

10.1016/j.jde.2015.09.049

10.1515/9783110812411

10.1007/978-1-4612-0641-5

10.1007/s00205-015-0946-y

10.1016/j.jde.2016.11.029

10.1090/S0894-0347-1991-1086966-0

10.3934/dcds.2015.35.2193

10.1090/cln/009

10.1017/CBO9781139095143

10.1016/j.aml.2020.106508

10.1007/s00205-013-0610-3

10.1016/S0252-9602(13)60051-X

10.1007/s00205-010-0354-2

10.1007/s00209-020-02532-6

Stokes, 1845, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc, 8, 287

10.1007/s00033-019-1129-8

10.1007/s00021-020-0490-x

10.7208/chicago/9780226764320.001.0001

10.1093/oso/9780198571339.001.0001

Hmidi, 2007, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differ. Equ, 12, 461

10.1016/j.jde.2003.07.007

10.24033/bsmf.2557

10.1016/j.jde.2013.07.011

Miao, 2012, Littlewood-Paley theory and its applications in partial differential equations of fluid dynamics

10.1016/j.physd.2018.12.004

10.1016/0362-546X(87)90061-7

10.1007/978-3-642-16830-7