The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome

Trends in Microbiology - Tập 22 - Trang 28-35 - 2014
Robert Dudler1
1Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Tài liệu tham khảo

Kelley, 2012, Ubiquitin-mediated control of plant homone signaling, Plant Physiol., 160, 47, 10.1104/pp.112.200527 Sadanandom, 2012, The ubiquitin-proteasome system: central modifier of plant signalling, New Phytol., 196, 13, 10.1111/j.1469-8137.2012.04266.x Smalle, 2004, The ubiquitin 26S proteasome proteolytic pathway, Annu. Rev. Plant Biol., 55, 555, 10.1146/annurev.arplant.55.031903.141801 Finley, 2009, Recognition and processing of ubiquitin-protein conjugates by the proteasome, Annu. Rev. Biochem., 78, 477, 10.1146/annurev.biochem.78.081507.101607 Shan, 2012, Comparison of phytohormone signaling mechanisms, Curr. Opin. Plant Biol., 15, 84, 10.1016/j.pbi.2011.09.006 Thaler, 2012, Evolution of jasmonate and salicylate signal crosstalk, Trends Plant Sci., 17, 260, 10.1016/j.tplants.2012.02.010 Spoel, 2009, Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity, Cell, 137, 860, 10.1016/j.cell.2009.03.038 Chini, 2009, Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module, FEBS J., 276, 4682, 10.1111/j.1742-4658.2009.07194.x Pieterse, 2012, Hormonal modulation of plant immunity, Annu. Rev. Cell Dev. Biol., 28, 489, 10.1146/annurev-cellbio-092910-154055 Marino, 2012, Ubiquitination during plant immune signaling, Plant Physiol., 160, 15, 10.1104/pp.112.199281 Hicks, 2010, Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases, Curr. Opin. Microbiol., 13, 41, 10.1016/j.mib.2009.11.008 Jones, 2006, The plant immune system, Nature, 444, 323, 10.1038/nature05286 Boller, 2009, A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors, Annu. Rev. Plant Biol., 60, 379, 10.1146/annurev.arplant.57.032905.105346 Kumar, 2013, Toll-like receptors, 396 Feng, 2012, Plant–bacterial pathogen interactions mediated by type III effectors, Curr. Opin. Plant Biol., 15, 469, 10.1016/j.pbi.2012.03.004 Lindeberg, 2012, Pseudomonas syringae type III effector repertoires: last words in endless arguments, Trends Microbiol., 20, 199, 10.1016/j.tim.2012.01.003 Coll, 2011, Programmed cell death in the plant immune system, Cell Death Differ., 18, 1247, 10.1038/cdd.2011.37 Durrant, 2004, Systemic acquired resistance, Annu. Rev. Phytopathol., 42, 185, 10.1146/annurev.phyto.42.040803.140421 Abramovitch, 2006, Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity, Proc. Natl. Acad. Sci. U.S.A., 103, 2851, 10.1073/pnas.0507892103 Janjusevic, 2006, A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase, Science, 311, 222, 10.1126/science.1120131 de Torres, 2006, Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis, Plant J., 47, 368, 10.1111/j.1365-313X.2006.02798.x Rosebrock, 2007, A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity, Nature, 448, 370, 10.1038/nature05966 Gimenez-Ibanez, 2009, AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants, Curr. Biol., 19, 423, 10.1016/j.cub.2009.01.054 Singer, 2013, A pathogen type III effector with a novel E3 ubiquitin ligase architecture, PLoS Pathog., 9, e1003121, 10.1371/journal.ppat.1003121 Nomura, 2006, A bacterial virulence protein suppresses host innate immunity to cause plant disease, Science, 313, 220, 10.1126/science.1129523 Cunnac, 2004, Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system, Mol. Microbiol., 53, 115, 10.1111/j.1365-2958.2004.04118.x Remigi, 2011, Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts, New Phytol., 192, 976, 10.1111/j.1469-8137.2011.03854.x Angot, 2006, Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants, Proc. Natl. Acad. Sci. U.S.A., 103, 14620, 10.1073/pnas.0509393103 Wu, 2010, NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases, PLoS Pathog., 6, e1000960, 10.1371/journal.ppat.1000960 Piscatelli, 2011, The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation, PLoS ONE, 6, e19331, 10.1371/journal.pone.0019331 Singer, 2008, Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases, Nat. Struct. Mol. Biol., 15, 1293, 10.1038/nsmb.1511 Rohde, 2007, Type III secretion effectors of the IpaH family are E3 ubiquitin ligases, Cell Host Microbe, 1, 77, 10.1016/j.chom.2007.02.002 Quezada, 2009, A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases, Proc. Natl. Acad. Sci. U.S.A., 106, 4864, 10.1073/pnas.0811058106 Diao, 2008, Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase, Nat. Struct. Mol. Biol., 15, 65, 10.1038/nsmb1346 Bos, 2010, Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1, Proc. Natl. Acad. Sci. U.S.A., 107, 9909, 10.1073/pnas.0914408107 Gilroy, 2011, CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a, New Phytol., 190, 653, 10.1111/j.1469-8137.2011.03643.x Dudler, 2013, Manipulation of host proteasomes as a virulence mechanism of plant pathogens, Annu. Rev. Phytopathol., 51, 521, 10.1146/annurev-phyto-082712-102312 Üstün, 2013, The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic acid mediated plant defence, PLoS Pathog., 9, e1003427, 10.1371/journal.ppat.1003427 Lewis, 2011, The YopJ superfamily in plant-associated bacteria, Mol. Plant Pathol., 12, 928, 10.1111/j.1364-3703.2011.00719.x Kisselev, 2012, Proteasome inhibitors: an expanding army attacking a unique target, Chem. Biol., 19, 99, 10.1016/j.chembiol.2012.01.003 Wäspi, 1998, Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice, Mol. Plant Microbe Interact., 11, 727, 10.1094/MPMI.1998.11.8.727 Wäspi, 1999, Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice, Microbiol. Res., 154, 89, 10.1016/S0944-5013(99)80040-8 Bian, 2012, Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering, Chembiochem, 13, 1946, 10.1002/cbic.201200310 Groll, 2008, A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism, Nature, 452, 755, 10.1038/nature06782 Kolodziejek, 2011, Proteasome activity imaging and profiling characterizes bacterial effector syringolin A, Plant Physiol., 155, 477, 10.1104/pp.110.163733 Schelbert Hofstetter, 2013, Arabidopsis YELLOW STRIPE LIKE7 and 8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells, Mol. Plant Microbe Interact., 26, 1302, 10.1094/MPMI-06-13-0163-R Lubkowitz, 2011, The oligopeptide transporters: a small gene family with a diverse group of substrates and functions?, Mol. Plant, 4, 407, 10.1093/mp/ssr004 Archer, 2010, Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma, Biochem. Pharmacol., 80, 170, 10.1016/j.bcp.2010.03.031 Krahn, 2011, The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins), Nat. Prod. Rep., 28, 1854, 10.1039/c1np00048a Melotto, 2006, Plant stomata function in innate immunity against bacterial invasion, Cell, 126, 969, 10.1016/j.cell.2006.06.054 Zeng, 2010, A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis, Plant Physiol., 153, 1188, 10.1104/pp.110.157016 Schellenberg, 2010, Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition, Mol. Plant Microbe Interact., 23, 1287, 10.1094/MPMI-04-10-0094 Misas-Villamil, 2013, Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites, PLoS Pathog., 9, e1003281, 10.1371/journal.ppat.1003281 Amrein, 2004, Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R, Mol. Plant Microbe Interact., 17, 90, 10.1094/MPMI.2004.17.1.90 Ramel, 2012, Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome, Mol. Plant Microbe Interact., 25, 1198, 10.1094/MPMI-03-12-0070-R Imker, 2009, SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A, J. Am. Chem. Soc., 131, 18263, 10.1021/ja909170u Ramel, 2009, Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate, BMC Biochem., 10, 26, 10.1186/1471-2091-10-26 Wuest, 2011, Enzymatic timing and tailoring of macrolactamization in syringolin biosynthesis, Org. Lett., 13, 4518, 10.1021/ol2016687 Baltrus, 2011, Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates, PLoS Pathog., 7, e1002132, 10.1371/journal.ppat.1002132 Dudnik, 2013, Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat, Stand. Genomic Sci., 8, 420, 10.4056/sigs.3997732 Chien, 2013, Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a is due to a defective E3 ubiquitin ligase domain in AvrPtoBB728a, Mol. Plant Microbe Interact., 26, 387, 10.1094/MPMI-08-12-0190-R Oka, 1988, Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation, J. Antibiot. (Tokyo), 41, 1338, 10.7164/antibiotics.41.1338 Terui, 1990, Structures of cepafungins I, II and III, J. Antibiot. (Tokyo), 43, 788, 10.7164/antibiotics.43.788 Schellenberg, 2007, Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium, Environ. Microbiol., 9, 1640, 10.1111/j.1462-2920.2007.01278.x Imker, 2010, N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF, Chem. Biol., 17, 1077, 10.1016/j.chembiol.2010.08.007 Dudnik, 2013, Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A, Microbiol. Res., 168, 73, 10.1016/j.micres.2012.09.006 Stein, 2012, One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor, Proc. Natl. Acad. Sci. U.S.A., 109, 18367, 10.1073/pnas.1211423109 Theodore, 2012, Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets, J. Nat. Prod., 75, 2007, 10.1021/np300623x Michel, 2006, Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites, Plant Mol. Biol., 62, 561, 10.1007/s11103-006-9045-7 Fischbach, 2006, Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms, Chem. Rev., 106, 3468, 10.1021/cr0503097 Finking, 2004, Biosynthesis of nonribosomal peptides, Annu. Rev. Microbiol., 58, 453, 10.1146/annurev.micro.58.030603.123615 Stachelhaus, 1999, The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chem. Biol., 6, 493, 10.1016/S1074-5521(99)80082-9 Keating, 1999, Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis, Curr. Opin. Chem. Biol., 3, 598, 10.1016/S1367-5931(99)00015-0 Hwang, 2005, Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae, Appl. Environ. Microbiol., 71, 5182, 10.1128/AEM.71.9.5182-5191.2005