Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus

Springer Science and Business Media LLC - Tập 15 - Trang 697-709 - 2011
Tomáš Řezanka1, Lucie Siristova2, Karel Sigler1
1Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
2Department of Fermentation Chemistry and Bioengineering, Institute of Chemical Technology Prague, Prague, Czech Republic

Tóm tắt

Novel rhamnolipid-producing strains of three thermophilic bacteria, Thermus sp., T. aquaticus and Meiothermus ruber were identified that have not been previously described as rhamnolipid producers. Rhamnolipids were extracted from supernatant and further purified by thin-layer chromatography. Mass spectrometry with negative electrospray ionization revealed 77 rhamnolipid homologues varying in chain length and unsaturation. Tandem mass spectrometry identified mono-rhamnolipid and di-rhamnolipid homologues containing one or two 3-hydroxy-fatty acids, saturated, monounsaturated or diunsaturated, even- or odd-chain, up to unusual long chains with 24 carbon atoms. The stereochemistry of rhamnose was L and that of 3-hydroxy-fatty acids was R, the position of double bonds in monoenoic acids was cis ω-9. All three strains produced a rhamnolipid that differs in structure from Pseudomonas aeruginosa rhamnolipids and exhibits excellent surfactant properties. Importantly, in comparison to P. aeruginosa both strains, i.e., Thermus and Meiothermus, are Biosafety level 1 microorganisms and are not pathogenic to humans.

Tài liệu tham khảo

Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–36. Bligh ED, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol. 1959;37:911–7. Bus J, Sies I, Lie Ken Jie MSF. 13C NMR of methyl, methylene and carbonyl carbon atoms of methyl alkenoates and alkynoates. Chem Phys Lipids. 1976;17:501–18. Busscher HJ, Neu TR, Van der Mei HC. Biosurfactant production by thermophilic dairy streptococci. Appl Microbiol Biotechnol. 1994;41:4–7. Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998;50:520–9. Christie WW, Han X. Lipid analysis. 4th ed. Bridgwater: Oily Press; 2010. De Trebbau Acevedo G, Mclnerney MJ. Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol. 1996;16:1–7. Denekamp C, Claeys M, Pocsfalvi G. Mechanism of cross-ring cleavage reactions in dirhamnosyl lipids: effect of the alkali ion. Rapid Commun Mass Spectrom. 2000;14:794–9. Deziel E, Lepine F, Milot S, Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta/Mol Cell Biol Lipids. 2000;1485:145–52. Dubeau D, Déziel E, Woods D, Lépine F. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009;9:263. Gerwig GJ, Kamerling JR, Vliegenthart JFG. Determination of the d and l configuration of neutral monosaccharides by high-resolution capillary GLC. Carbohyd Res. 1978;62:349–57. Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A. Use of liquid chromatography mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactants Deterg. 2003;6:155–61. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem. 2008;391:1579–90. Horikoshi K, editor. Extremophiles Handbook. Tokyo: Springer; 2011. Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography–mass spectrometry. Lipids. 2000;35:233–6. Jakob B, Voss G, Gerlach H. Synthesis of (S)- and (R)-3-hydroxyhexadecanoic acid. Tetrahedron Asymmetr. 1996;7:3255–62. Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas aeruginosa. J Amer Chem Soc. 1949;71:4124–6. Kasai R, Okihara M, Asakawa J, Mizutani K, Tanaka O. 13C NMR study of α- and β-anomeric pairs of d-mannopyranosides and l-rhamnopyranosides. Tetrahedron. 1979;35:1427–32. Knirel YA. Polysaccharide antigens of Pseudomonas aeruginosa. Crit Rev Microbiol. 1990;17:273–304. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araújo JM, Mitchell DA, Ramos LP, Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids. 2007;147:1–13. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv. 2010;28:635–43. Ohtani I, Kusumi T, Kashman Y, Kakisawa H. High-field FT NMR application of Mosher method, the absolute-configurations of marine terpenoids. J Am Chem Soc. 1991;113:4092–5. Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol. 2010;88:939–51. Podlasek CA, Wu J, Stripe WA, Bondo PB, Serianni AS. [13C]-enriched methyl aldopyranosides: Structural interpretations of 13C–1H spin-coupling constants and 1H chemical shifts. J Amer Chem Soc. 1995;117:8635–44. Price NPJ, Ray KJ, Vermillion K, Kuo T-M. MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohyd Res. 2009;344:204–9. Rezanka T. Polyunsaturated and unusual fatty-acids from slime-molds. Phytochemistry. 1993;33:1441–4. Rezanka T, Siristova L, Melzoch K, Sigler K. Identification of (S)-11-cycloheptyl-4-methylundecanoic acid in acylphosphatidylglycerol from Alicyclobacillus acidoterrestris. Chem Phys Lipids. 2009a;158:104–13. Rezanka T, Siristova L, Melzoch K, Sigler K. Direct ESI–MS analysis of O-acyl glycosylated cardiolipins from the thermophilic bacterium Alicyclobacillus acidoterrestris. Chem Phys Lipids. 2009b;161:115–21. Rooney AP, Price NPJ, Ray KJ, Kuo T-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett. 2009;295:82–7. Sharma A, Jansen R, Nimtz M, Johri BN, Wray V. Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. J Nat Prod. 2007;70:941–7. Shen W, Yang S, Li X. Electrospray ionization mass spectrometric detection of rhamnolipids and their acid precursors in Pseudomonas sp. BS-03 cultures. Chin J Biotechnol. 2005;25:83–7. Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Coll Surf B Biointerfaces. 2010;79:174–83. Siristova L, Melzoch K, Rezanka T. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles. 2009;13:101–9. Soberon-Chavez G, editor. Biosurfactants, from genes to applications, vol. 20 A. Berlin: Springer; 2011. Warabi K, Hamada T, Nakao Y, Matsunaga S, Hirota H, Van Soest RWM, Fusetani N. Axinelloside A, an unprecedented highly sulfated lipopolysaccharide inhibiting telomerase, from the marine sponge, Axinella infundibula. J Am Chem Soc. 2005;127:13262–70.