Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6‐trinitrotoluene

Microbial Biotechnology - Tập 2 Số 2 - Trang 287-294 - 2009
Matilde Fernández1, Estrella Duque2, Paloma Pizarro‐Tobías1, Pieter van Dillewijn2, Rolf‐Michael Wittich2, Juan L. Ramos2
1Bio-Iliberis Research and Development, Edificio BIC, Parque Tecnológico de Ciencias de la Salud, E-18100 Armilla, Granada, Spain.
2Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain

Tóm tắt

Summary Pseudomonas putida KT2440 grows in M9 minimal medium with glucose in the presence of 2,4,6‐trinitrotoluene (TNT) at a similar rate than in the absence of TNT, although global transcriptional analysis using DNA microarrays revealed that TNT exerts some stress. Response to TNT stress is regulated at the transcriptional level, as significant changes in the level of expression of 65 genes were observed. Of these genes, 39 appeared upregulated, and 26 were downregulated. The identity of upregulated genes suggests that P. putida uses two kinds of strategies to overcome TNT toxicity: (i) induction of genes encoding nitroreductases and detoxification‐related enzymes (pnrA, xenD, acpD) and (ii) induction of multidrug efflux pump genes (mexEF/oprN) to reduce intracellular TNT concentrations. Mutants of 13 up‐ and 7 downregulated genes were analysed with regards to TNT toxicity revealing the role of the MexE/MexF/OprN pump and a putative isoquinoline 1‐oxidoreductase in tolerance to TNT. The ORF PP1232 whose transcriptional level did not change in response to TNT affected growth in the presence of nitroaromatic compounds and it was found in a screening of 4000 randomly generated mutants.

Từ khóa


Tài liệu tham khảo

10.1099/mic.0.2007/005942-0

10.1111/j.1574-6941.2007.00296.x

10.1016/S0021-9258(20)64294-6

10.1111/j.1462-2920.2005.00801.x

10.1007/s10532-005-9033-7

10.1007/978-1-4020-6097-7_8

10.1128/JB.00950-06

10.1128/AEM.00386-08

10.1128/AEM.00388-08

10.1128/MMBR.65.3.335-352.2001

10.1074/jbc.M211778200

10.1128/JB.01849-05

10.1128/AEM.00169-07

10.1111/j.1751-7915.2008.00027.x

10.1007/s10295-007-0289-2

10.1111/j.1462-2920.2007.01272.x

10.1074/jbc.M111334200

10.1007/s00284-004-4322-7

10.1046/j.1462-2920.2002.00370.x

10.1021/bi0117504

10.1128/jb.173.9.2944-2953.1991

10.1007/s00203-005-0036-x

10.1046/j.1365-2958.1997.2281594.x

10.1016/j.jenvman.2003.12.005

10.1128/JB.180.11.2987-2991.1998

10.1007/s00253-007-1087-5

10.1006/plas.1998.1340

10.1046/j.1365-2958.2002.03197.x

10.1248/bpb.20.110

10.1016/S0038-0717(99)00156-X

10.1046/j.1462-2920.2002.00366.x

10.1016/S0027-5107(02)00174-4

10.1128/AEM.66.11.4742-4750.2000

10.1128/JB.182.3.573-580.2000

10.1016/j.plantsci.2004.06.013

10.1128/AEM.01507-07

10.1128/JB.00101-06

10.1128/AEM.68.4.1690-1696.2002

10.1111/j.1751-7915.2007.00014.x

10.1111/j.1462-2920.2004.00586.x

10.1074/jbc.M506180200

10.1128/JB.187.17.5937-5945.2005

10.1016/j.jbbm.2006.12.002

10.1007/s00253-007-1008-7

10.1046/j.1462-2920.2002.00365.x

10.1007/s00253-001-0836-0

10.1128/AEM.70.6.3566-3574.2004

10.1099/00221287-148-6-1607

10.1021/es071449w

10.1111/j.1462-2920.2005.00890.x

10.1128/jb.176.12.3536-3543.1994

10.1128/jb.178.15.4731-4733.1996

10.1128/jb.178.15.4508-4514.1996