Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes

Springer Science and Business Media LLC - Tập 86 Số 6 - Trang 1659-1670 - 2010
Leland S. Pierson1, Elizabeth A. Pierson2
1Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
2Dept. of Horticultural Sciences, Texas A&M University, College Station, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane- bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

Balasubramanian D, Mathee K (2009) Comparative transcriptome analyses of Pseudomonas aeruginosa. Hum Genomics 3:349–361

Beifuss U, Tietze M (2005) Methanophenzine and other natural biologically active phenazines. Top Curr Chem 244:77–113

Bisschop A, Bergsma J, Konings WN (1979) Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis. European Journal of Biochemistry 93:369–374

Chen JP, Xiao-Chang CL (2004) Organic light-emitting device having phenanthroline-fused phenazine. US Patent 6713781

Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist 157:503–523

Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGF, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f sp radicis-lycopersici. Mol Plant-Microb Interact 11:1069–1077

Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp strains. Molecular Plant-Microbe Interactions 14:1006–1015

Choi EJ, Kwon HC, Ham J, Yang HO (2009) 6-Hydroxymethyl-1-phenazine-carboxamide and 1, 6-phenazinedimethanol from a marine bacterium, Brevibacterium sp KMD 003, associated with marine purple vase sponge. J Antibiot 62:621–624

Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease of defence? British Journal of Dermatology 158:442–455

Courtney JM, Bradley J, McCaughan J, O'Connor TM, Shortt C, Bredin CP, Bradbury I, Elborn JS (2007) Predictors of mortality in adults with cystic fibrosis. Pediatric Pulmonology 42:525–532

Cox C (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infection and Immunity 52:263–270

Davies JC (2002) Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 3:128–134

de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357

Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327

De Sordi L, Mühlschlegel FA (2009) Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9:990–999

Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology 61:1308–1321

Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206

Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427

De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Molecular Plant-Microbe Interactions 19:1406–1419

Drago L (2009) Bacteria and biofilm in respiratory tract infections. Infect Med 17(Suppl 2):3–9

Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888

Dwivedi D, Johri BN, Ineichen K, Wray V, Wiemken A (2009) Impact of antifungals producing rhizobacteria on the performance of Vigna radiate in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19:559–570

Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria tritici by Phenazine- or Siderophore-deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

Gebhardt K, Schimana J, Krastel P, Dettner K, Rheinheimer J, Zeeck A, Fiedler HP (2002) Endophenazines A-D, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus: I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 55:794–800

Greenhagen BT, Shi K, Robinson H, Gamage S, Bera AK, Ladner JE, Parsons JF (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47:5281–5289

Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports 26:1408–1446

Gusarov I, Shatalin K, Staroodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

Hari N, Moorthy NS, Karthikeyan C, Trivedi P (2009) Synthesis, cytotoxic evaluation and in silico pharmacokinetic prediction of some benzo[α]phenazine-5-sulfonic acid derivatives. Med Chem 5:549–557

Hassan HM, Fridovich I (1980) Mechanism of action of pyocyanin. J Bacteriol 141:156–163

Hassett DJ, Schweizer HP, Ohman DE (1995) Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330–6337

Hassett DJ, Sutton MD, Schurr MJ, Herr AB, Caldwell CC, Matu JO (2009) Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends in Microbiology 17:130–138

Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology 70:921–928

Huang J, Xu Y, Zhang H, Li Y, Huang X, Ren B, Zhang X (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp strain M18. Applied and Environmental Microbiology 75:6568–6580

Jeykumari DRS, Narayanan SS (2007) Covalent modification of multiwalled carbon nanotubes with neutral red for the fabrication of an amperometric hydrogen peroxide sensor. Nanotechnology 18:125501–125510

Kobayashi H, Kobayashi O, Kawai S (2009) Pathogenesis and clinical manifestations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract. J Infect Chemother 15:125–142

Kobayashi K, Tagawa S (2004) Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J Biochem 136:607–615

Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proceedings of the National Academy of Sciences of the United States of America 106:15915–15920

Lau GW, Hassett DJ, Ran H, Kong F (2004a) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D (2004b) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infection and Immunity 72:4275–4278

Laursen JB, Nielsen J (2004) Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chemical Reviews 104:1663–1685

Li XN, Wu ZJ, Si ZJ, Liang-Zhou LXJ, Zhang HJ (2009) Effect of secondary ligands' size on energy transfer and electroluminescent efficiencies for a series of europium(III) complexes, a density functional theory study. Phys Chem Chem Phys 11:9687–9695

Liang H, Li L, Kong W, Shen L, Duan K (2009) Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa. FEMS Microbiology Letters 293:196–204

Luo HP, Liu GL, Zhang RD, Cao LX (2009) Isolation and characterization of electrochemical active Pseudomonas aeruginosa strain RE7. Huanjing Kexue 30:2118–2123

Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, Wilson R (2001) Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an anti-staphylococcal substance. J Med Microbiol 34:213–217

Maddula VS, Pierson EA, Pierson LS 3rd (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766

Maddula VS, Zhang Z, Pierson EA, Pierson LS 3rd (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microbial Ecology 52:289–301

Mavrodi DV, Blankenfeldt W, Thomashow LS, Mentel M (2006) Phenazine compounds in fluorescent Pseudomonas spp biosynthesis and regulation. Annual review of Phytopathology 44:417–445

Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and Evolution of the Phenazine Biosynthesis Pathway Appl Environ Microbiol [Epub ahead of print]

Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS 3rd (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology 58:2616–2624

McBain AJ (2009) Chapter 4: In vitro biofilm models: an overview. Advances in Applied Microbiology 69:99–132

Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W (2009) Of two make one: the biosynthesis of phenazines. ChemBioChem 10:2295–2304

Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Current Opinion in Pediatrics 19:83–88

Nakaike S, Yamagishi T, Nanaumi K, Otomo S, Tsukagoshi S (2005) Cell-killing activity and kinetic analysis of a novel antitumor compound NC-190, a Benzo[α]phenazine derivative. Cancer Science 83:402–409

O'May CY, Sanderson K, Roddam LF, Kirov SM, Reid DW (2009) Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions. J Med Microbiol 58:765–773

Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, Ladner JE (2007) Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46:1821–1828

Pham TH, Boon N, De Maeyer K, Hofte M, Rabaey K, Verstraete W (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Applied Microbiology and Biotechnology 80:985–993

Pierson LS III, Lam S, Gaffney T, Gong FC (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiology Letters 134:299–307

Pierson LS III, Pierson EA (1996) Phenazine antibiotic production by the biological control bacterium Pseudomonas aureofaciens: role in ecology and disease suppression. FEMS Microbiology Letters 136:101–108

Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Molecular Plant-Microbe Interactions 5:330–339

Pinto JE, Dyer WE, Weller SC, Herrmann KM (1988) Glyphosate Induces 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase in Potato (Solanum tuberosum L) Cells Grown in Suspension Culture. Plant Physiology 87:891–893

Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381

Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science and Technology 39:3401–3408

Rada B, Leto TL (2009) Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin. Immunologic Research 43:198–209

Ran H, Hassett DJ, Lau GW (2003) Human targets of Pseudomonas aeruginosa pyocyanin. Proceedings of the National Academy of Sciences of the United States of America 100:14315–14320

Ryazanova OA, Voloshin IM, Makitruk VL, Zozulya VN, Karachevtsev VA (2007) pH-induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochim Acta A Mol Biomol Spectrosc 66:849–859

Sanderson DG, Gross EL, Seibert M (1987) A photosynthetic photoelectrochemical cell using phenazine methosulfate and phenazine ethosulfate as electron acceptors. Applied Biochemistry and Biotechnology 14:1–12

Sappal DS, McClendon AK, Fleming JA, Thoroddsen V, Connolly K, Reimer C, Blackman RK, Bulawa CE, Osheroff N, Charlton P, Rudolph-Owen LA (2004) Biological characterization of MLN944: a potent DNA binding agent. Mol Cancer Ther 3:47–58

Schoonbeek HJ, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Molecular Plant-Microbe Interactions 15:1165–1172

Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Cámara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PA01. Infection and Immunity 74:1673–1682

Sorensen RU, Klinger JD, Cash HA, Chase PA, Dearborn DG (1983) In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infection and Immunity 41:321–330

Stewart-Tull DES, Armstrong A (1971) The effect of 1-hydroxyphenazine and pyocyanine from Pseudomonas aeruginosa on mammalian cell respiration. J Med Microbiol 5:67–73

Tambong JT, Hofte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. European Journal of Plant Pathology 107:511–521

Thomashow LS, Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaumannomyces graminis var tritici. J Bacteriol 170:3499–3508

Toohey JI, Nelson CD, Krotkov G (1965) Toxicity of phenazine carboxylic acids to some bacteria, algae, higher plants and animals. Canadian Journal of Botany 43:1151–1155

Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews 34:3–17

Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Advances in Microbial Physiology 27:211–275

Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology 11:443–448

Verhagen BW, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions 17:895–908

Wang Y, Newman DK (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environmental Science and Technology 42:2386–2389

Wang Y, Kern SE, Newman DK (2009) Endogenous phenazine “antibiotics” promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369

Webby CJ, Baker HM, Lott JS, Baker EN, Parker EJ (2005) The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. J Mol Biol 354:927–939

Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

Winstanley C, Fothergill JL (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomons aeruginosa infections. FEMS Microbiology Letters 290:1–9