Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy
Tóm tắt
The key precursors for p-hydroxybenzoate production by engineered Pseudomonas putida S12 are phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), for which the pentose phosphate (PP) pathway is an important source. Since PP pathway fluxes are typically low in pseudomonads, E4P and PEP availability is a likely bottleneck for aromatics production which may be alleviated by stimulating PP pathway fluxes via co-feeding of pentoses in addition to glucose or glycerol. As P. putida S12 lacks the natural ability to utilize xylose, the xylose isomerase pathway from E. coli was introduced into the p-hydroxybenzoate producing strain P. putida S12palB2. The initially inefficient xylose utilization was improved by evolutionary selection after which the p-hydroxybenzoate production was evaluated. Even without xylose-co-feeding, p-hydroxybenzoate production was improved in the evolved xylose-utilizing strain, which may indicate an intrinsically elevated PP pathway activity. Xylose co-feeding further improved the p-hydroxybenzoate yield when co-fed with either glucose or glycerol, up to 16.3 Cmol% (0.1 g p-hydroxybenzoate/g substrate). The yield improvements were most pronounced with glycerol, which probably related to the availability of the PEP precursor glyceraldehyde-3-phosphate (GAP). Thus, it was demonstrated that the production of aromatics such as p-hydroxybenzoate can be improved by co-feeding different carbon sources via different and partially artificial pathways. Moreover, this approach opens new perspectives for the efficient production of (fine) chemicals from renewable feedstocks such as lignocellulose that typically has a high content of both glucose and xylose and (crude) glycerol.
Tài liệu tham khảo
de Bont JA (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499
del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152
Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590
Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO (2002) Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog 18:6–20
Hartmans S, van der Werf MJ, de Bont JA (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351
Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973
Himmel ME, Bayer EA (2009) Lignocellulose conversion to biofuels: current challenges, global perspectives. Curr Opin Biotechnol 20:316–317
Kieboom J, de Bont JAM (2001) Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance. Microbiology 147:43–51
Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391
Lange JP (2007) Lignocellulose conversion; an introduction to chemistry, process and economics. Biofuels, Bioprod Biorefin 1:39–48
Martinez K, de Anda R, Hernandez G, Escalante A, Gosset G, Ramirez OT, Bolivar FG (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 7:1
Meijnen JP, de Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of d-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037
Nijkamp K, van Luijk N, de Bont JA, Wery J (2005) The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69:170–177
Nijkamp K, Westerhof RGM, Ballerstedt H, de Bont JAM, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624
Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21
Sambrook J, Fritsch EF, Maniatis T (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794
Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85:5166–5170
Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486
Verhoef S, Ruijssenaars HJ, de Bont JA, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132:49–56
Verhoef S, Wierckx N, Westerhof RG, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936
Verhoef S, Ballerstedt H, Volkers RJ, de Winde JH, Ruijssenaars HJ (2010) Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 87:679–690
Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227
Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM (2009) Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. J Biotechnol 143:124–129