Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12
Tài liệu tham khảo
Amaratunga, M., Lobos, J.H., Johnson, B.F., Williams, E.D., 2000. Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid. US Patent 6,030,819.
Arias-Barrau, 2004, The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida, J. Bacteriol., 186, 5062, 10.1128/JB.186.15.5062-5077.2004
Ballerstedt, 2007, Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies, Appl. Microbiol. Biotechnol., 75, 1133, 10.1007/s00253-007-0914-z
Barker, 2001, Microbial synthesis of p-hydroxybenzoic acid from glucose, Biotechnol. Bioeng., 76, 376, 10.1002/bit.10160
Ben-Bassat, A., Cattermole, M., Gantenby, A., Gibson, K.J., Ramos-Gonzales, M.I., Ramos, J.L., Sariaslani, S., 2001. Method for the production of para-hydroxybenzoate in species of Pseudomonas and Agrobacterium. Int. Pat. Appl. WO 0192539.
De Bont, 1998, Solvent-tolerant bacteria in biocatalysis, Tibtech, 16, 493, 10.1016/S0167-7799(98)01234-7
Dell, 1993, Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate limiting enzymes in the common pathway of aromatic amino acid biosynthesis, J. Am. Chem. Soc., 115, 11581, 10.1021/ja00077a065
Frost, 1995, Biocatalytic syntheses of aromatics from d-glucose: renewable microbial sources of aromatic compounds, Annu. Rev. Microbiol., 49, 557, 10.1146/annurev.mi.49.100195.003013
Grelak, R.L., Chen, K.K., 1998. Method for the production of para-hydroxybenzoate in Pseudomonas mendocina. Int. Pat. Appl. WO 9856920.
Hartmans, 1989, Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X, Appl. Env. Microbiol., 55, 2850, 10.1128/AEM.55.11.2850-2855.1989
Harwood, 1996, The beta-ketoadipate pathway and the biology of self-identity, Annu. Rev. Microbiol., 50, 553, 10.1146/annurev.micro.50.1.553
Hodgins, 1971, Yeast phenylalanine ammonia-lyase, J. Biol. Chem., 246, 2977, 10.1016/S0021-9258(18)62279-3
Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Env. Microbiol., 4, 824, 10.1046/j.1462-2920.2002.00370.x
Kieboom, 2001, Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance, Microbiology, 147, 43, 10.1099/00221287-147-1-43
Kumagai, 1970, Tyrosine phenol lyase I. Purification, crystallization, and properties, J. Biol. Chem., 245, 1767, 10.1016/S0021-9258(19)77158-0
Lindsey, 1957, The Kolbe–Schmitt reaction, Chem. Rev., 57, 583, 10.1021/cr50016a001
McQualter, 2005, Initial evaluation of sugarcane as a production platform of p-hydroxybenzoic acid, Plant Biotechnol. J., 3, 29, 10.1111/j.1467-7652.2004.00095.x
Miller, 1999, Bioconversion of toluene to p-hydroxybenzoate, Green Chem., 143, 10.1039/a901383k
Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Env. Microbiol., 4, 799, 10.1046/j.1462-2920.2002.00366.x
Nijkamp, 2005, The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose, Appl. Microbiol. Biotechnol., 69, 170, 10.1007/s00253-005-1973-7
Nijkamp, 2007, Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose, Appl. Microbiol. Biotechnol., 74, 617, 10.1007/s00253-006-0703-0
Overhage, 1999, Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199, Appl. Env. Microbiol., 65, 4837, 10.1128/AEM.65.11.4837-4847.1999
Quandt, 1993, Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria, Gene, 127, 15, 10.1016/0378-1119(93)90611-6
Sambrook, 1982
Schmid, 2001, Industrial biocatalysis today and tomorrow, Nature, 409, 258, 10.1038/35051736
Siebert, 1996, Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco, Plant Physiol., 112, 811, 10.1104/pp.112.2.811
Stadthagen, 2005, p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis, J. Biol. Chem., 280, 40699, 10.1074/jbc.M508332200
Venturi, 1998, Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358, Microbiology, 144, 965, 10.1099/00221287-144-4-965
Wery, 2004, Solvent tolerance of pseudomonads: a new degree of freedom in biocatalysis, vol. 3
Wierckx, 2005, Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose, Appl. Env. Microbiol., 71, 8221, 10.1128/AEM.71.12.8221-8227.2005
Yazdani, 2007, Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry, Curr. Opin. Biotechnol., 18, 213, 10.1016/j.copbio.2007.05.002
Zaks, 2001, Industrial biocatalysis, Curr. Opin. Chem. Biol., 5, 130, 10.1016/S1367-5931(00)00181-2