Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12

Journal of Biotechnology - Tập 132 - Trang 49-56 - 2007
Suzanne Verhoef1,2,3, Harald J. Ruijssenaars1,2, Jan A.M. de Bont1,2, Jan Wery1,2
1TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands
2B-Basic, Julianalaan 67, 2628 BC Delft, The Netherlands
3Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands

Tài liệu tham khảo

Amaratunga, M., Lobos, J.H., Johnson, B.F., Williams, E.D., 2000. Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid. US Patent 6,030,819. Arias-Barrau, 2004, The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida, J. Bacteriol., 186, 5062, 10.1128/JB.186.15.5062-5077.2004 Ballerstedt, 2007, Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies, Appl. Microbiol. Biotechnol., 75, 1133, 10.1007/s00253-007-0914-z Barker, 2001, Microbial synthesis of p-hydroxybenzoic acid from glucose, Biotechnol. Bioeng., 76, 376, 10.1002/bit.10160 Ben-Bassat, A., Cattermole, M., Gantenby, A., Gibson, K.J., Ramos-Gonzales, M.I., Ramos, J.L., Sariaslani, S., 2001. Method for the production of para-hydroxybenzoate in species of Pseudomonas and Agrobacterium. Int. Pat. Appl. WO 0192539. De Bont, 1998, Solvent-tolerant bacteria in biocatalysis, Tibtech, 16, 493, 10.1016/S0167-7799(98)01234-7 Dell, 1993, Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate limiting enzymes in the common pathway of aromatic amino acid biosynthesis, J. Am. Chem. Soc., 115, 11581, 10.1021/ja00077a065 Frost, 1995, Biocatalytic syntheses of aromatics from d-glucose: renewable microbial sources of aromatic compounds, Annu. Rev. Microbiol., 49, 557, 10.1146/annurev.mi.49.100195.003013 Grelak, R.L., Chen, K.K., 1998. Method for the production of para-hydroxybenzoate in Pseudomonas mendocina. Int. Pat. Appl. WO 9856920. Hartmans, 1989, Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X, Appl. Env. Microbiol., 55, 2850, 10.1128/AEM.55.11.2850-2855.1989 Harwood, 1996, The beta-ketoadipate pathway and the biology of self-identity, Annu. Rev. Microbiol., 50, 553, 10.1146/annurev.micro.50.1.553 Hodgins, 1971, Yeast phenylalanine ammonia-lyase, J. Biol. Chem., 246, 2977, 10.1016/S0021-9258(18)62279-3 Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Env. Microbiol., 4, 824, 10.1046/j.1462-2920.2002.00370.x Kieboom, 2001, Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance, Microbiology, 147, 43, 10.1099/00221287-147-1-43 Kumagai, 1970, Tyrosine phenol lyase I. Purification, crystallization, and properties, J. Biol. Chem., 245, 1767, 10.1016/S0021-9258(19)77158-0 Lindsey, 1957, The Kolbe–Schmitt reaction, Chem. Rev., 57, 583, 10.1021/cr50016a001 McQualter, 2005, Initial evaluation of sugarcane as a production platform of p-hydroxybenzoic acid, Plant Biotechnol. J., 3, 29, 10.1111/j.1467-7652.2004.00095.x Miller, 1999, Bioconversion of toluene to p-hydroxybenzoate, Green Chem., 143, 10.1039/a901383k Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Env. Microbiol., 4, 799, 10.1046/j.1462-2920.2002.00366.x Nijkamp, 2005, The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose, Appl. Microbiol. Biotechnol., 69, 170, 10.1007/s00253-005-1973-7 Nijkamp, 2007, Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose, Appl. Microbiol. Biotechnol., 74, 617, 10.1007/s00253-006-0703-0 Overhage, 1999, Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199, Appl. Env. Microbiol., 65, 4837, 10.1128/AEM.65.11.4837-4847.1999 Quandt, 1993, Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria, Gene, 127, 15, 10.1016/0378-1119(93)90611-6 Sambrook, 1982 Schmid, 2001, Industrial biocatalysis today and tomorrow, Nature, 409, 258, 10.1038/35051736 Siebert, 1996, Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco, Plant Physiol., 112, 811, 10.1104/pp.112.2.811 Stadthagen, 2005, p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis, J. Biol. Chem., 280, 40699, 10.1074/jbc.M508332200 Venturi, 1998, Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358, Microbiology, 144, 965, 10.1099/00221287-144-4-965 Wery, 2004, Solvent tolerance of pseudomonads: a new degree of freedom in biocatalysis, vol. 3 Wierckx, 2005, Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose, Appl. Env. Microbiol., 71, 8221, 10.1128/AEM.71.12.8221-8227.2005 Yazdani, 2007, Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry, Curr. Opin. Biotechnol., 18, 213, 10.1016/j.copbio.2007.05.002 Zaks, 2001, Industrial biocatalysis, Curr. Opin. Chem. Biol., 5, 130, 10.1016/S1367-5931(00)00181-2