Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
Tài liệu tham khảo
Abril, 1989, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway, J. Bacteriol., 171, 6782, 10.1128/jb.171.12.6782-6790.1989
Andersen, 1977, Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli, J. Biol. Chem., 252, 4151, 10.1016/S0021-9258(17)40245-6
Arai, 2011, Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa, Front. Microbiol., 2, 103, 10.3389/fmicb.2011.00103
Baba, 2006, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2, 10.1038/msb4100050
Bagdasarian, 1981, Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas, Gene, 16, 237, 10.1016/0378-1119(81)90080-9
Belkin, 1992, Biodegradation of haloalkanes, Biodegradation, 3, 299, 10.1007/BF00129090
Bergmann, 1957, Determination of trace amounts of chlorine in naphtha, Anal. Chem., 29, 241, 10.1021/ac60122a018
Blank, 2008, Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase, FEBS J., 275, 5173, 10.1111/j.1742-4658.2008.06648.x
Blattner, 1997, The complete genome sequence of Escherichia coli K-12, Science, 277, 1453, 10.1126/science.277.5331.1453
Bothast, 1999, Fermentations with new recombinant organisms, Biotechnol. Progr., 15, 867, 10.1021/bp990087w
Boyer, 1969, A complementation analysis of the restriction and modification of DNA in Escherichia coli, J. Mol. Biol., 41, 459, 10.1016/0022-2836(69)90288-5
Boyle, 2012, Parts plus pipes: synthetic biology approaches to metabolic engineering, Metab. Eng., 14, 223, 10.1016/j.ymben.2011.10.003
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Bringer-Meyer, 1986, Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization, Arch. Microbiol., 146, 105, 10.1007/BF00402334
Brown, 1977, The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli, Microbiology, 102, 327
Bujara, 2010, Engineering in complex systems, Curr. Opin. Biotechnol., 21, 586, 10.1016/j.copbio.2010.07.007
Byun, 1986, Construction of a new vector for the expression of foreign genes in Zymomonas mobilis, J. Ind. Microbiol., 1, 9, 10.1007/BF01569411
Castro, 1977, Biodehalogenation, Environ. Health Perspect., 21, 279, 10.1289/ehp.7721279
Chapman, 1971, Adenylate energy charge in Escherichia coli during growth and starvation, J. Bacteriol., 108, 1072, 10.1128/jb.108.3.1072-1086.1971
Chavarría, 2012, Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism, mBio, 3, e00028, 10.1128/mBio.00028-12
Clark, 1989, The fermentation pathways of Escherichia coli, FEMS Microbiol. Rev., 5, 223
Coder, 1997, Assessment of bacterial viability status by flow cytometry and single cell sorting, Curr. Protoc. Cytom., 15, 9.2.1
Conway, 1992, The Entner–Doudoroff pathway: history, physiology and molecular biology, FEMS Microbiol. Rev., 103, 1, 10.1111/j.1574-6968.1992.tb05822.x
Demain, 2009, Biosolutions to the energy problem, J. Ind. Microbiol. Biotechnol., 36, 319, 10.1007/s10295-008-0521-8
de Graef, 1999, The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli, J. Bacteriol., 181, 2351, 10.1128/JB.181.8.2351-2357.1999
de Jong, 2003, Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon–halogen bond, Curr. Opin. Struct. Biol., 13, 722, 10.1016/j.sbi.2003.10.009
de Lorenzo, 1994, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons, Methods Enzymol ., 235, 386, 10.1016/0076-6879(94)35157-0
Diefenbach, 1991, Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion, Biochem. J., 276, 439, 10.1042/bj2760439
Dittrich, 2005, Characterization of the acetate-producing pathways in Escherichia coli, Biotechnol. Progr., 21, 1062, 10.1021/bp050073s
Drepper, 2007, Reporter proteins for in vivo fluorescence without oxygen, Nat. Biotechnol., 25, 443, 10.1038/nbt1293
Drepper, 2010, Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters, Appl. Environ. Microbiol., 76, 5990, 10.1128/AEM.00701-10
Duque, 2007, Towards a genome-wide mutant library of Pseudomonas putida strain KT2440, 5, 227
Ebert, 2011, Response of Pseudomonas putida KT2440 to increased NADH and ATP demand, Appl. Environ. Microbiol., 77, 6597, 10.1128/AEM.05588-11
Eschbach, 2004, Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation, J. Bacteriol., 186, 4596, 10.1128/JB.186.14.4596-4604.2004
Fetzner, 1998, Bacterial dehalogenation, Appl. Microbiol. Biotechnol., 50, 633, 10.1007/s002530051346
Fuhrer, 2005, Experimental identification and quantification of glucose metabolism in seven bacterial species, J. Bacteriol., 187, 1581, 10.1128/JB.187.5.1581-1590.2005
Geddes, 2011, Advances in ethanol production, Curr. Opin. Biotechnol., 22, 312, 10.1016/j.copbio.2011.04.012
Häggblom, 1999, Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium, Arch. Microbiol., 171, 230, 10.1007/s002030050704
Häggblom, 2000, Anaerobic decomposition of halogenated aromatic compounds, Environ. Pollut., 107, 199, 10.1016/S0269-7491(99)00138-4
Hanahan, 1983, Plasmid screening at high colony density, Methods Enzymol., 100, 333, 10.1016/0076-6879(83)00066-X
Hartmanis, 1984, Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate, Appl. Environ. Microbiol., 47, 1277, 10.1128/aem.47.6.1277-1283.1984
Hayashi, 2012, Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol, Appl. Environ. Microbiol., 78, 5622, 10.1128/AEM.00733-12
Herrero, 1990, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria, J. Bacteriol., 172, 6557, 10.1128/jb.172.11.6557-6567.1990
Hoppner, 1983, Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production, Appl. Microbiol. Biotechnol., 17, 152, 10.1007/BF00505880
Horton, 1990, Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction, BioTechniques, 8, 528
Ibekwe, 2001, Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil, J. Appl. Microbiol., 91, 668, 10.1046/j.1365-2672.2001.01431.x
Janssen, 2004, Evolving haloalkane dehalogenases, Curr. Opin. Chem. Biol., 8, 150, 10.1016/j.cbpa.2004.02.012
Janssen, 1987, Degradation of n-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70, Appl. Environ. Microbiol., 53, 561, 10.1128/aem.53.3.561-566.1987
Janssen, 1987, Involvement of a quinoprotein alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism in Xanthobacter autotrophicus GJlO, J. Gen. Microbiol., 133, 85
Janssen, 2001, Microbial dehalogenation, Curr. Opin. Biotechnol., 12, 254, 10.1016/S0958-1669(00)00208-1
Kanehisa, 2012, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, D109, 10.1093/nar/gkr988
Keseler, 2011, EcoCyc: a comprehensive database of Escherichia coli biology, Nucleic Acids Res., 39, D583, 10.1093/nar/gkq1143
Kessler, 1994, Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions, J. Bacteriol., 176, 3171, 10.1128/jb.176.11.3171-3176.1994
Keuning, 1985, Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, J. Bacteriol., 163, 635, 10.1128/jb.163.2.635-639.1985
Knappe, 1990, A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli, FEMS Microbiol. Rev., 75, 383
Lee, 1998, New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field, Annu. Rev. Microbiol., 52, 423, 10.1146/annurev.micro.52.1.423
Loza-Tavera, 2011, Microbial bioremediation of chemical pollutants: how bacteria cope with multi-stress environmental scenarios, 481
Lundin, 1986, Estimation of biomass in growing cell lines by adenosine triphosphate assay, Methods Enzymol., 133, 27, 10.1016/0076-6879(86)33053-2
Neale, 1986, The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles, Eur. J. Biochem., 154, 119, 10.1111/j.1432-1033.1986.tb09366.x
Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ. Microbiol., 4, 799, 10.1046/j.1462-2920.2002.00366.x
Neumann, 2006, Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase, Appl. Environ. Microbiol., 72, 4232, 10.1128/AEM.02904-05
Nikel, 2012, Implantation of unmarked regulatory and metabolic modules in gram-negative bacteria with specialised mini-transposon delivery vectors, J. Biotechnol.
Nilsson, 1996, Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic β-cells, Biochem. J., 314, 91, 10.1042/bj3140091
Nogales, 2008, A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory, BMC Syst. Biol., 2, 79, 10.1186/1752-0509-2-79
Ohta, 1991, Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II, Appl. Environ. Microbiol., 57, 893, 10.1128/aem.57.4.893-900.1991
Poblete-Castro, 2012, Industrial biotechnology of Pseudomonas putida and related species, Appl. Microbiol. Biotechnol., 93, 2279, 10.1007/s00253-012-3928-0
Poelarends, 1998, Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170, Appl. Environ. Microbiol., 64, 2931, 10.1128/AEM.64.8.2931-2936.1998
Poelarends, 1999, Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1, J. Bacteriol., 181, 2050, 10.1128/JB.181.7.2050-2058.1999
Poelarends, 2000, Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways, J. Bacteriol., 182, 2191, 10.1128/JB.182.8.2191-2199.2000
Poelarends, 2001, Trans-3-chloroacrylic acid dehalogenase from Pseudomonas pavonaceae 170 shares structural and mechanistic similarities with 4-oxalocrotonate tautomerase, J. Bacteriol., 183
Puchalka, 2008, Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology, PLoS Comput. Biol., 4, e1000210, 10.1371/journal.pcbi.1000210
Roberts, 1976, The degradation of (Z)- and (E)-1,3-dichloropropenes and 1,2-dichloropropane in soil, Pestic. Sci., 7, 325, 10.1002/ps.2780070402
Sambrook, 2001, Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor
Sawers, 1988, Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12, J. Bacteriol., 170, 5330, 10.1128/jb.170.11.5330-5336.1988
Schöler, 2003, Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater, Chemosphere, 52, 339, 10.1016/S0045-6535(03)00214-5
Schultz, 1993, Bioluminometric assay of ADP and ATP at high ATP/ADP ratios: assay of ADP after enzymatic removal of ATP, Anal. Biochem., 215, 302, 10.1006/abio.1993.1591
Shiro, 2012, Structural basis for nitrous oxide generation by bacterial nitric oxide reductases, Philos. Trans. R. Soc. London, Ser. B, 367, 1195, 10.1098/rstb.2011.0310
Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de las Heras A., Páez-Espino D., Durante-Rodríguez G., Kim J., Nikel P.I., Platero R., de Lorenzo V. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucl. Acids Res., (in press)
Sohn, 2010, In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival, Biotechnol. J., 5, 739, 10.1002/biot.201000124
Song, 2000, Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments, Appl. Environ. Microbiol., 66, 3446, 10.1128/AEM.66.8.3446-3453.2000
Verdoni, 1992, Metabolic and energetic control of Pseudomonas mendocina growth during transitions from aerobic to oxygen-limited conditions in chemostat cultures, Appl. Environ. Microbiol., 58, 3150, 10.1128/aem.58.9.3150-3156.1992
Verhagen, 1995, Bacterial dichloropropene degradation in soil; screening of soils and involvement of plasmids carrying the dhlA gene, Soil Biol. Biochem., 27, 1547, 10.1016/0038-0717(95)00105-N
van Dijk, 1974, Degradation of 1,3-dichloropropenes in the soil, AgroEcosystems, 1, 193
Yadav, 2012, The future of metabolic engineering and synthetic biology: towards a systematic practice, Metab. Eng., 14, 233, 10.1016/j.ymben.2012.02.001