Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene

Metabolic Engineering - Tập 15 - Trang 98-112 - 2013
Pablo I. Nikel1, Víctor de Lorenzo1
1Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain

Tài liệu tham khảo

Abril, 1989, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway, J. Bacteriol., 171, 6782, 10.1128/jb.171.12.6782-6790.1989 Andersen, 1977, Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli, J. Biol. Chem., 252, 4151, 10.1016/S0021-9258(17)40245-6 Arai, 2011, Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa, Front. Microbiol., 2, 103, 10.3389/fmicb.2011.00103 Baba, 2006, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2, 10.1038/msb4100050 Bagdasarian, 1981, Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas, Gene, 16, 237, 10.1016/0378-1119(81)90080-9 Belkin, 1992, Biodegradation of haloalkanes, Biodegradation, 3, 299, 10.1007/BF00129090 Bergmann, 1957, Determination of trace amounts of chlorine in naphtha, Anal. Chem., 29, 241, 10.1021/ac60122a018 Blank, 2008, Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase, FEBS J., 275, 5173, 10.1111/j.1742-4658.2008.06648.x Blattner, 1997, The complete genome sequence of Escherichia coli K-12, Science, 277, 1453, 10.1126/science.277.5331.1453 Bothast, 1999, Fermentations with new recombinant organisms, Biotechnol. Progr., 15, 867, 10.1021/bp990087w Boyer, 1969, A complementation analysis of the restriction and modification of DNA in Escherichia coli, J. Mol. Biol., 41, 459, 10.1016/0022-2836(69)90288-5 Boyle, 2012, Parts plus pipes: synthetic biology approaches to metabolic engineering, Metab. Eng., 14, 223, 10.1016/j.ymben.2011.10.003 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Bringer-Meyer, 1986, Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization, Arch. Microbiol., 146, 105, 10.1007/BF00402334 Brown, 1977, The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli, Microbiology, 102, 327 Bujara, 2010, Engineering in complex systems, Curr. Opin. Biotechnol., 21, 586, 10.1016/j.copbio.2010.07.007 Byun, 1986, Construction of a new vector for the expression of foreign genes in Zymomonas mobilis, J. Ind. Microbiol., 1, 9, 10.1007/BF01569411 Castro, 1977, Biodehalogenation, Environ. Health Perspect., 21, 279, 10.1289/ehp.7721279 Chapman, 1971, Adenylate energy charge in Escherichia coli during growth and starvation, J. Bacteriol., 108, 1072, 10.1128/jb.108.3.1072-1086.1971 Chavarría, 2012, Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism, mBio, 3, e00028, 10.1128/mBio.00028-12 Clark, 1989, The fermentation pathways of Escherichia coli, FEMS Microbiol. Rev., 5, 223 Coder, 1997, Assessment of bacterial viability status by flow cytometry and single cell sorting, Curr. Protoc. Cytom., 15, 9.2.1 Conway, 1992, The Entner–Doudoroff pathway: history, physiology and molecular biology, FEMS Microbiol. Rev., 103, 1, 10.1111/j.1574-6968.1992.tb05822.x Demain, 2009, Biosolutions to the energy problem, J. Ind. Microbiol. Biotechnol., 36, 319, 10.1007/s10295-008-0521-8 de Graef, 1999, The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli, J. Bacteriol., 181, 2351, 10.1128/JB.181.8.2351-2357.1999 de Jong, 2003, Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon–halogen bond, Curr. Opin. Struct. Biol., 13, 722, 10.1016/j.sbi.2003.10.009 de Lorenzo, 1994, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons, Methods Enzymol ., 235, 386, 10.1016/0076-6879(94)35157-0 Diefenbach, 1991, Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion, Biochem. J., 276, 439, 10.1042/bj2760439 Dittrich, 2005, Characterization of the acetate-producing pathways in Escherichia coli, Biotechnol. Progr., 21, 1062, 10.1021/bp050073s Drepper, 2007, Reporter proteins for in vivo fluorescence without oxygen, Nat. Biotechnol., 25, 443, 10.1038/nbt1293 Drepper, 2010, Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters, Appl. Environ. Microbiol., 76, 5990, 10.1128/AEM.00701-10 Duque, 2007, Towards a genome-wide mutant library of Pseudomonas putida strain KT2440, 5, 227 Ebert, 2011, Response of Pseudomonas putida KT2440 to increased NADH and ATP demand, Appl. Environ. Microbiol., 77, 6597, 10.1128/AEM.05588-11 Eschbach, 2004, Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation, J. Bacteriol., 186, 4596, 10.1128/JB.186.14.4596-4604.2004 Fetzner, 1998, Bacterial dehalogenation, Appl. Microbiol. Biotechnol., 50, 633, 10.1007/s002530051346 Fuhrer, 2005, Experimental identification and quantification of glucose metabolism in seven bacterial species, J. Bacteriol., 187, 1581, 10.1128/JB.187.5.1581-1590.2005 Geddes, 2011, Advances in ethanol production, Curr. Opin. Biotechnol., 22, 312, 10.1016/j.copbio.2011.04.012 Häggblom, 1999, Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium, Arch. Microbiol., 171, 230, 10.1007/s002030050704 Häggblom, 2000, Anaerobic decomposition of halogenated aromatic compounds, Environ. Pollut., 107, 199, 10.1016/S0269-7491(99)00138-4 Hanahan, 1983, Plasmid screening at high colony density, Methods Enzymol., 100, 333, 10.1016/0076-6879(83)00066-X Hartmanis, 1984, Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate, Appl. Environ. Microbiol., 47, 1277, 10.1128/aem.47.6.1277-1283.1984 Hayashi, 2012, Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol, Appl. Environ. Microbiol., 78, 5622, 10.1128/AEM.00733-12 Herrero, 1990, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria, J. Bacteriol., 172, 6557, 10.1128/jb.172.11.6557-6567.1990 Hoppner, 1983, Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production, Appl. Microbiol. Biotechnol., 17, 152, 10.1007/BF00505880 Horton, 1990, Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction, BioTechniques, 8, 528 Ibekwe, 2001, Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil, J. Appl. Microbiol., 91, 668, 10.1046/j.1365-2672.2001.01431.x Janssen, 2004, Evolving haloalkane dehalogenases, Curr. Opin. Chem. Biol., 8, 150, 10.1016/j.cbpa.2004.02.012 Janssen, 1987, Degradation of n-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70, Appl. Environ. Microbiol., 53, 561, 10.1128/aem.53.3.561-566.1987 Janssen, 1987, Involvement of a quinoprotein alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism in Xanthobacter autotrophicus GJlO, J. Gen. Microbiol., 133, 85 Janssen, 2001, Microbial dehalogenation, Curr. Opin. Biotechnol., 12, 254, 10.1016/S0958-1669(00)00208-1 Kanehisa, 2012, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, D109, 10.1093/nar/gkr988 Keseler, 2011, EcoCyc: a comprehensive database of Escherichia coli biology, Nucleic Acids Res., 39, D583, 10.1093/nar/gkq1143 Kessler, 1994, Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions, J. Bacteriol., 176, 3171, 10.1128/jb.176.11.3171-3176.1994 Keuning, 1985, Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, J. Bacteriol., 163, 635, 10.1128/jb.163.2.635-639.1985 Knappe, 1990, A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli, FEMS Microbiol. Rev., 75, 383 Lee, 1998, New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field, Annu. Rev. Microbiol., 52, 423, 10.1146/annurev.micro.52.1.423 Loza-Tavera, 2011, Microbial bioremediation of chemical pollutants: how bacteria cope with multi-stress environmental scenarios, 481 Lundin, 1986, Estimation of biomass in growing cell lines by adenosine triphosphate assay, Methods Enzymol., 133, 27, 10.1016/0076-6879(86)33053-2 Neale, 1986, The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles, Eur. J. Biochem., 154, 119, 10.1111/j.1432-1033.1986.tb09366.x Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ. Microbiol., 4, 799, 10.1046/j.1462-2920.2002.00366.x Neumann, 2006, Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase, Appl. Environ. Microbiol., 72, 4232, 10.1128/AEM.02904-05 Nikel, 2012, Implantation of unmarked regulatory and metabolic modules in gram-negative bacteria with specialised mini-transposon delivery vectors, J. Biotechnol. Nilsson, 1996, Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic β-cells, Biochem. J., 314, 91, 10.1042/bj3140091 Nogales, 2008, A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory, BMC Syst. Biol., 2, 79, 10.1186/1752-0509-2-79 Ohta, 1991, Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II, Appl. Environ. Microbiol., 57, 893, 10.1128/aem.57.4.893-900.1991 Poblete-Castro, 2012, Industrial biotechnology of Pseudomonas putida and related species, Appl. Microbiol. Biotechnol., 93, 2279, 10.1007/s00253-012-3928-0 Poelarends, 1998, Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170, Appl. Environ. Microbiol., 64, 2931, 10.1128/AEM.64.8.2931-2936.1998 Poelarends, 1999, Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1, J. Bacteriol., 181, 2050, 10.1128/JB.181.7.2050-2058.1999 Poelarends, 2000, Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways, J. Bacteriol., 182, 2191, 10.1128/JB.182.8.2191-2199.2000 Poelarends, 2001, Trans-3-chloroacrylic acid dehalogenase from Pseudomonas pavonaceae 170 shares structural and mechanistic similarities with 4-oxalocrotonate tautomerase, J. Bacteriol., 183 Puchalka, 2008, Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology, PLoS Comput. Biol., 4, e1000210, 10.1371/journal.pcbi.1000210 Roberts, 1976, The degradation of (Z)- and (E)-1,3-dichloropropenes and 1,2-dichloropropane in soil, Pestic. Sci., 7, 325, 10.1002/ps.2780070402 Sambrook, 2001, Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor Sawers, 1988, Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12, J. Bacteriol., 170, 5330, 10.1128/jb.170.11.5330-5336.1988 Schöler, 2003, Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater, Chemosphere, 52, 339, 10.1016/S0045-6535(03)00214-5 Schultz, 1993, Bioluminometric assay of ADP and ATP at high ATP/ADP ratios: assay of ADP after enzymatic removal of ATP, Anal. Biochem., 215, 302, 10.1006/abio.1993.1591 Shiro, 2012, Structural basis for nitrous oxide generation by bacterial nitric oxide reductases, Philos. Trans. R. Soc. London, Ser. B, 367, 1195, 10.1098/rstb.2011.0310 Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de las Heras A., Páez-Espino D., Durante-Rodríguez G., Kim J., Nikel P.I., Platero R., de Lorenzo V. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucl. Acids Res., (in press) Sohn, 2010, In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival, Biotechnol. J., 5, 739, 10.1002/biot.201000124 Song, 2000, Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments, Appl. Environ. Microbiol., 66, 3446, 10.1128/AEM.66.8.3446-3453.2000 Verdoni, 1992, Metabolic and energetic control of Pseudomonas mendocina growth during transitions from aerobic to oxygen-limited conditions in chemostat cultures, Appl. Environ. Microbiol., 58, 3150, 10.1128/aem.58.9.3150-3156.1992 Verhagen, 1995, Bacterial dichloropropene degradation in soil; screening of soils and involvement of plasmids carrying the dhlA gene, Soil Biol. Biochem., 27, 1547, 10.1016/0038-0717(95)00105-N van Dijk, 1974, Degradation of 1,3-dichloropropenes in the soil, AgroEcosystems, 1, 193 Yadav, 2012, The future of metabolic engineering and synthetic biology: towards a systematic practice, Metab. Eng., 14, 233, 10.1016/j.ymben.2012.02.001