Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin

Metabolic Engineering - Tập 28 - Trang 240-247 - 2015
Christopher W. Johnson1, Gregg T. Beckham1
1National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States

Tài liệu tham khảo

Bagdasarian, 1983, Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors, Gene, 26, 273, 10.1016/0378-1119(83)90197-X Berríos-Rivera, 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase, Metab. Eng., 4, 217, 10.1006/mben.2002.0227 Branduardi, 2006, Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export, Microb. Cell Fact., 5, 4, 10.1186/1475-2859-5-4 Bugg, 2011, Pathways for degradation of lignin in bacteria and fungi, Nat. Prod. Rep., 28, 1883, 10.1039/c1np00042j Bugg, 2011, The emerging role for bacteria in lignin degradation and bio-product formation, Curr. Opin. Biotechnol, 22, 394, 10.1016/j.copbio.2010.10.009 Chandran, 2011, Microbial production of isoprenoids, Process Biochem., 46, 1703, 10.1016/j.procbio.2011.05.012 Chundawat, 2011, Deconstruction of lignocellulosic biomass to fuels and chemicals, Annu. Rev. Chem. Biomol. Eng., 2, 121, 10.1146/annurev-chembioeng-061010-114205 Clark, 2004, Benzoate decreases the binding of cis,cis-Muconate to the BenM regulator despite the synergistic effect of both compounds on transcriptional activation, J. Bacteriol., 186, 1200, 10.1128/JB.186.4.1200-1204.2004 Cosper, 2000, Mutations in catB, the gene encoding muconate cycloisomerase, activate transcription of the distal ben genes and contribute to a complex regulatory circuit in Acinetobacter sp. strain ADP1, J. Bacteriol., 182, 7044, 10.1128/JB.182.24.7044-7052.2000 Crawford, 1975, Novel pathway for degradation of protocatechuic acid in Bacillus species, J. Bacteriol., 121, 531, 10.1128/JB.121.2.531-536.1975 Curran, 2013, Metabolic engineering of muconic acid production in Saccharomyces cerevisiae, Metab. Eng., 15, 55, 10.1016/j.ymben.2012.10.003 Dagley, 1960, New pathways in the oxidative metabolism of aromatic compounds by microorganisms, Nature, 188, 560, 10.1038/188560a0 Dagley, 1965, The bacterial degradation of catechol, Biochem. J., 95, 466, 10.1042/bj0950466 Davis, 2013, 88 del Castillo, 2007, Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis, J. Bacteriol., 189, 5142, 10.1128/JB.00203-07 Draths, 1994, Environmentally compatible synthesis of adipic acid from d-glucose, J. Am. Chem. Soc., 116, 399, 10.1021/ja00080a057 Escapa, 2012, The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida, Environ. Microbiol., 14, 1049, 10.1111/j.1462-2920.2011.02684.x Eschbach, 2004, Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation, J. Bacteriol., 186, 4596, 10.1128/JB.186.14.4596-4604.2004 Feist, 1969, Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways, J. Bacteriol., 100, 869, 10.1128/JB.100.2.869-877.1969 Feist, 1969, Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida, J. Bacteriol., 100, 1121, 10.1128/JB.100.2.1121-1123.1969 Fuchs, 2011, Microbial degradation of aromatic compounds—from one strategy to four, Nat. Rev. Microbiol., 9, 803, 10.1038/nrmicro2652 Garvie, 1980, Bacterial lactate dehydrogenases, Microbiol. Rev., 44, 106, 10.1128/MR.44.1.106-139.1980 Greated, 2002, Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida, Environ. Microbiol., 4, 856, 10.1046/j.1462-2920.2002.00305.x Hara, 2003, Characterization of the 4-carboxy-4-hydroxy-2-oxoadipate aldolase gene and operon structure of the protocatechuate 4, 5-cleavage pathway genes in Sphingomonas paucimobilis SYK-6, J. Bacteriol., 185, 41, 10.1128/JB.185.1.41-50.2003 Harayama, 1990, The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes, Mol. Gen. Genet., 221, 113, 10.1007/BF00280375 Harwood, 1996, The beta-ketoadipate pathway and the biology of self-identity, Annu. Rev. Microbiol., 50, 553, 10.1146/annurev.micro.50.1.553 Hegeman, 1966, Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type, J. Bacteriol., 91, 1140, 10.1128/JB.91.3.1140-1154.1966 Holbrook, 1975, Lactate dehydrogenase Jiang, 2001, Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli, Microbiology (Reading, England), 147, 2437, 10.1099/00221287-147-9-2437 Jiménez, 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Environ. Microbiol., 4, 824, 10.1046/j.1462-2920.2002.00370.x Kamimura, 2010, Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. Strain E6 and discovery of a novel pathway gene, Appl. Environ. Microbiol., 76, 8093, 10.1128/AEM.01863-10 Kamimura, 2014, The protocatechuate 4, 5-cleavage pathway: overview and new findings, 207 Kasai, 2009, Uncovering the protocatechuate 2,3-cleavage pathway genes, J. Bacteriol., 191, 6758, 10.1128/JB.00840-09 Kolb, 1970, Isolation and characterization of bovine lactate dehydrogenase X, Biochemistry, 9, 4372, 10.1021/bi00824a018 Lamsen, 2012, Recent progress in synthetic biology for microbial production of C3-C10 alcohols, Front Microbiol., 3 Lee, 2004, Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene, Appl. Microbiol. Biotechnol., 65, 56, 10.1007/s00253-004-1560-3 Lin, 2014, Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli, Metab. Eng., 23, 62, 10.1016/j.ymben.2014.02.009 Linger, 2014, Lignin valorization through integrated biological funneling and chemical catalysis, Proc. Natl. Acad. Sci., 111, 12013, 10.1073/pnas.1410657111 Martínez, 2005, Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin, Int. Microbiol., 8, 195 Marx, 2008, Development of a broad-host-range sacB-based vector for unmarked allelic exchange, BMC Res. Notes, 1, 1, 10.1186/1756-0500-1-1 Nicolaou, 2010, A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing from biofuels and chemicals, to biocatalysis and bioremediation, Metab. Eng., 12, 307, 10.1016/j.ymben.2010.03.004 Nikel, 2013, Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene, Metab. Eng., 15, 98, 10.1016/j.ymben.2012.09.006 Nikel, 2014, Biotechnological domestication of pseudomonads using synthetic biology, Nat. Rev. Microbiol., 12, 368, 10.1038/nrmicro3253 Noda, 1990, Molecular cloning of the protocatechuate 4, 5-dioxygenase genes of Pseudomonas paucimobilis, J. Bacteriol., 172, 2704, 10.1128/JB.172.5.2704-2709.1990 Ornston, 1966, The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation, J. Biol. Chem., 241, 3800, 10.1016/S0021-9258(18)99842-X Ornston, 1966, The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida, J. Biol. Chem., 241, 3776, 10.1016/S0021-9258(18)99839-X Park, 2007, Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation, Proc. Natl. Acad. Sci. USA, 104, 7797, 10.1073/pnas.0702609104 Pérez-Pantoja, 2010, Aerobic degradation of aromatic hydrocarbons, 799 Phale, 2007, Metabolic diversity in bacterial degradation of aromatic compounds, OMICS, 11, 252, 10.1089/omi.2007.0004 Poblete-Castro, 2013, In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates, Metab. Eng., 15, 113, 10.1016/j.ymben.2012.10.004 Porro, 1995, Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid, Biotechnol. Prog., 11, 294, 10.1021/bp00033a009 Ragauskas, 2014, Lignin valorization: improving lignin processing in the biorefinery, Science, 344, 1246843, 10.1126/science.1246843 Regenhardt, 2002, Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440, Environ. Microbiol., 4, 912, 10.1046/j.1462-2920.2002.00368.x Taguchi, 1991, d-lactate dehydrogenase is a member of the d-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the d-lactate dehydrogenase gene of Lactobacillus plantarum, J. Biol. Chem., 266, 12588, 10.1016/S0021-9258(18)98939-8 Tarmy, 1968, Chemical characterization of d-lactate dehydrogenase from Escherichia coli B, J. Biol. Chem., 243, 2579, 10.1016/S0021-9258(18)93413-7 Tomar, 2003, The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli, Appl. Microbiol. Biotechnol., 62, 76, 10.1007/s00253-003-1234-6 Vardon, 2015, Adipic acid production from lignin, Energy and Environmental Science, 8, 617, 10.1039/C4EE03230F van Duuren, 2012, pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1, Biotechnol. Prog., 28, 85, 10.1002/btpr.709 van Duuren, 2011, Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield, J. Biotechnol., 156, 163, 10.1016/j.jbiotec.2011.08.030 Weber, 2012, Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae, Appl. Environ. Microbiol., 78, 8421, 10.1128/AEM.01983-12 Williams, 1994, The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas, Biodegradation, 5, 195, 10.1007/BF00696460 Zakzeski, 2010, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev., 110, 3552, 10.1021/cr900354u Zhao, 2011, Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway, Appl. Microbiol. Biotechnol., 90, 1915, 10.1007/s00253-011-3199-1 Zhu, 2004, The effect of pfl gene knockout on the metabolism for optically pure d-lactate production by Escherichia coli, Appl. Microbiol. Biotechnol., 64, 367, 10.1007/s00253-003-1499-9