Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440
Tóm tắt
Từ khóa
Tài liệu tham khảo
Blank, 2008, Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase, FEBS J, 275, 5173, 10.1111/j.1742-4658.2008.06648.x
Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol, 69, 1548, 10.1128/AEM.69.3.1548-1555.2003
Bretschger, 2007, Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants, Appl. Environ. Microbiol, 73, 7003, 10.1128/AEM.01087-07
Choi, 2006, A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation, J. Microbiol. Methods, 64, 391, 10.1016/j.mimet.2005.06.001
de Eugenio, 2010, The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance, Environ. Microbiol, 12, 207, 10.1111/j.1462-2920.2009.02061.x
Ebert, 2011, Response of Pseudomonas putida KT2440 to increased NADH and ATP demand, Appl. Environ. Microbiol, 77, 6597, 10.1128/AEM.05588-11
Escapa, 2012, The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida, Environ. Microbiol, 14, 1049, 10.1111/j.1462-2920.2011.02684.x
Flynn, 2010, Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria, MBio, 1, e00190-10, 10.1128/mBio.00190-10
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Glasser, 2014, Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force, Mol. Microbiol, 92, 399, 10.1111/mmi.12566
Goldbeck, 2013, Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli, ACS Synth. Biol, 2, 150, 10.1021/sb300119v
Hartmans, 1989, Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124x, Appl. Environ. Microbiol, 55, 2850, 10.1128/AEM.55.11.2850-2855.1989
Heerema, 2011, In situ phenol removal from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction, Biochem. Eng. J, 53, 245, 10.1016/j.bej.2010.11.002
Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol, 70, 921, 10.1128/AEM.70.2.921-928.2004
Jensen, 2010, Engineering of a synthetic electron conduit in living cells, Proc. Natl. Acad. Sci. U.S.A, 107, 19213, 10.1073/pnas.1009645107
Küpper, 2013, Fermentative produktion von monorhamnolipiden im Pilotmaßstab – herausforderungen der Maßstabsvergrößerung; fermentative production of monorhamnolipids in pilot scale – challenges in scale-up, Chem. Ing. Tech, 85, 834, 10.1002/cite.201200194
Lang, 2014, Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites, Microb. Cell Fact, 13, 2, 10.1186/1475-2859-13-2
Lovley, 2008, The microbe electric: conversion of organic matter to electricity, Curr. Opin. Biotechnol, 19, 564, 10.1016/j.copbio.2008.10.005
Lovley, 2011, Geobacter: the microbe electric's physiology, ecology, and practical applications, Adv. Microb. Physiol, 59, 1, 10.1016/B978-0-12-387661-4.00004-5
Mavrodi, 2001, Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1, J. Bacteriol, 183, 6454, 10.1128/JB.183.21.6454-6465.2001
Mentel, 2009, Of two make one: the biosynthesis of phenazines, Chembiochem, 10, 2295, 10.1002/cbic.200900323
Mitchell, 1982, The role of oxygen in the regulation of glucose-metabolism, transport and the tricarboxylic-acid cycle in Pseudomonas aeruginosa, J. Gen. Microbiol, 128, 49, 10.1099/00221287-128-1-49
NEBuilder., 2013, New England Biolabs
Nikel, 2013, Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene, Metab. Eng, 15, 98, 10.1016/j.ymben.2012.09.006
Nikel, 2014, Biotechnological domestication of pseudomonads using synthetic biology, Nat. Rev. Microbiol, 12, 368, 10.1038/nrmicro3253
Park, 1999, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol, 65, 2912, 10.1128/AEM.65.7.2912-2917.1999
Pierson, 2010, Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes, Appl. Microbiol. Biotechnol, 86, 1659, 10.1007/s00253-010-2509-3
Rabaey, 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol, 39, 3401, 10.1021/es048563o
Rosenbaum, 2012, Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)-citrate or oxygen as terminal electron acceptor, PLoS ONE, 7, e30827, 10.1371/journal.pone.0030827
Rosenbaum, 2014, Engineering microbial electrocatalysis for chemical and fuel production, Curr. Opin. Biotechnol, 29, 93, 10.1016/j.copbio.2014.03.003
Sakhtah, 2014, Regulation of phenazine biosynthesis, Microbial Phenazines Biosynthesis, Agriculture and Health, 19
Steen, 2013, Construction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications, J. Biotechnol, 163, 155, 10.1016/j.jbiotec.2012.09.015
TerAvest, 2014, The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli, ChemElectroChem, 1, 1874, 10.1002/celc.201402194
Ütkür, 2012, Integrated organic-aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida, J. Ind. Microbiol. Biotechnol, 39, 1049, 10.1007/s10295-012-1106-0
van Duuren, 2013, Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition, BMC Biotechnol, 13, 93, 10.1186/1472-6750-13-93
Venkataraman, 2011, Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems, Energy Environ. Sci, 4, 4550, 10.1039/c1ee01377g
Venkataraman, 2010, Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems, Electrochem. Commun, 12, 459, 10.1016/j.elecom.2010.01.019
Verhoef, 2009, Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation, Appl. Environ. Microbiol, 75, 931, 10.1128/AEM.02186-08
Vickers, 2010, Grand challenge commentary: chassis cells for industrial biochemical production, Nat. Chem. Biol, 6, 875, 10.1038/nchembio.484
Volmer, 2014, Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity, Appl. Environ. Microbiol, 80, 6539, 10.1128/AEM.01940-14
Wang, 2010, Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer, J. Bacteriol, 192, 365, 10.1128/JB.01188-09
Wang, 2008, Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen, Environ. Sci. Technol, 42, 2380, 10.1021/es702290a
Wang, 2011, Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition, J. Bacteriol, 193, 3606, 10.1128/JB.00396-11
Wierckx, 2005, Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose, Appl. Environ. Microbiol, 71, 8221, 10.1128/AEM.71.12.8221-8227.2005
Wittgens, 2011, Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440, Microb. Cell Fact, 10, 80, 10.1186/1475-2859-10-80