Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440

Simone Schmitz1, Salome C. Nies1, Nick Wierckx1, Lars M. Blank1, Miriam A. Rosenbaum1
1RWTH Aachen University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blank, 2008, Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase, FEBS J, 275, 5173, 10.1111/j.1742-4658.2008.06648.x

Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol, 69, 1548, 10.1128/AEM.69.3.1548-1555.2003

Bretschger, 2007, Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants, Appl. Environ. Microbiol, 73, 7003, 10.1128/AEM.01087-07

Choi, 2006, A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation, J. Microbiol. Methods, 64, 391, 10.1016/j.mimet.2005.06.001

de Eugenio, 2010, The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance, Environ. Microbiol, 12, 207, 10.1111/j.1462-2920.2009.02061.x

Ebert, 2011, Response of Pseudomonas putida KT2440 to increased NADH and ATP demand, Appl. Environ. Microbiol, 77, 6597, 10.1128/AEM.05588-11

Escapa, 2012, The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida, Environ. Microbiol, 14, 1049, 10.1111/j.1462-2920.2011.02684.x

Filloux, 2014, Pseudomonas: Methods and Protocols, 10.1007/978-1-4939-0473-0

Flynn, 2010, Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria, MBio, 1, e00190-10, 10.1128/mBio.00190-10

Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318

Glasser, 2014, Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force, Mol. Microbiol, 92, 399, 10.1111/mmi.12566

Goldbeck, 2013, Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli, ACS Synth. Biol, 2, 150, 10.1021/sb300119v

Hartmans, 1989, Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124x, Appl. Environ. Microbiol, 55, 2850, 10.1128/AEM.55.11.2850-2855.1989

Heerema, 2011, In situ phenol removal from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction, Biochem. Eng. J, 53, 245, 10.1016/j.bej.2010.11.002

Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol, 70, 921, 10.1128/AEM.70.2.921-928.2004

Jensen, 2010, Engineering of a synthetic electron conduit in living cells, Proc. Natl. Acad. Sci. U.S.A, 107, 19213, 10.1073/pnas.1009645107

Küpper, 2013, Fermentative produktion von monorhamnolipiden im Pilotmaßstab – herausforderungen der Maßstabsvergrößerung; fermentative production of monorhamnolipids in pilot scale – challenges in scale-up, Chem. Ing. Tech, 85, 834, 10.1002/cite.201200194

Lang, 2014, Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites, Microb. Cell Fact, 13, 2, 10.1186/1475-2859-13-2

Lovley, 2008, The microbe electric: conversion of organic matter to electricity, Curr. Opin. Biotechnol, 19, 564, 10.1016/j.copbio.2008.10.005

Lovley, 2011, Geobacter: the microbe electric's physiology, ecology, and practical applications, Adv. Microb. Physiol, 59, 1, 10.1016/B978-0-12-387661-4.00004-5

Mavrodi, 2001, Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1, J. Bacteriol, 183, 6454, 10.1128/JB.183.21.6454-6465.2001

Mentel, 2009, Of two make one: the biosynthesis of phenazines, Chembiochem, 10, 2295, 10.1002/cbic.200900323

Mitchell, 1982, The role of oxygen in the regulation of glucose-metabolism, transport and the tricarboxylic-acid cycle in Pseudomonas aeruginosa, J. Gen. Microbiol, 128, 49, 10.1099/00221287-128-1-49

NEBuilder., 2013, New England Biolabs

Nikel, 2013, Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene, Metab. Eng, 15, 98, 10.1016/j.ymben.2012.09.006

Nikel, 2014, Biotechnological domestication of pseudomonads using synthetic biology, Nat. Rev. Microbiol, 12, 368, 10.1038/nrmicro3253

Park, 1999, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol, 65, 2912, 10.1128/AEM.65.7.2912-2917.1999

Pierson, 2010, Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes, Appl. Microbiol. Biotechnol, 86, 1659, 10.1007/s00253-010-2509-3

Rabaey, 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol, 39, 3401, 10.1021/es048563o

Rosenbaum, 2012, Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)-citrate or oxygen as terminal electron acceptor, PLoS ONE, 7, e30827, 10.1371/journal.pone.0030827

Rosenbaum, 2014, Engineering microbial electrocatalysis for chemical and fuel production, Curr. Opin. Biotechnol, 29, 93, 10.1016/j.copbio.2014.03.003

Sakhtah, 2014, Regulation of phenazine biosynthesis, Microbial Phenazines Biosynthesis, Agriculture and Health, 19

Steen, 2013, Construction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications, J. Biotechnol, 163, 155, 10.1016/j.jbiotec.2012.09.015

TerAvest, 2014, The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli, ChemElectroChem, 1, 1874, 10.1002/celc.201402194

Ütkür, 2012, Integrated organic-aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida, J. Ind. Microbiol. Biotechnol, 39, 1049, 10.1007/s10295-012-1106-0

van Duuren, 2013, Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition, BMC Biotechnol, 13, 93, 10.1186/1472-6750-13-93

Venkataraman, 2011, Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems, Energy Environ. Sci, 4, 4550, 10.1039/c1ee01377g

Venkataraman, 2010, Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems, Electrochem. Commun, 12, 459, 10.1016/j.elecom.2010.01.019

Verhoef, 2009, Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation, Appl. Environ. Microbiol, 75, 931, 10.1128/AEM.02186-08

Vickers, 2010, Grand challenge commentary: chassis cells for industrial biochemical production, Nat. Chem. Biol, 6, 875, 10.1038/nchembio.484

Volmer, 2014, Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity, Appl. Environ. Microbiol, 80, 6539, 10.1128/AEM.01940-14

Wang, 2010, Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer, J. Bacteriol, 192, 365, 10.1128/JB.01188-09

Wang, 2008, Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen, Environ. Sci. Technol, 42, 2380, 10.1021/es702290a

Wang, 2011, Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition, J. Bacteriol, 193, 3606, 10.1128/JB.00396-11

Wierckx, 2005, Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose, Appl. Environ. Microbiol, 71, 8221, 10.1128/AEM.71.12.8221-8227.2005

Wittgens, 2011, Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440, Microb. Cell Fact, 10, 80, 10.1186/1475-2859-10-80

Yang, 2015, Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway, ACS Synth. Biol, 10.1021/sb500331x