Smart nanomaterial and nanocomposite with advanced agrochemical activities
Tóm tắt
Tài liệu tham khảo
Mittal D, Kaur G, Singh P, Yadav K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol 2:579954. https://doi.org/10.3389/fnano.2020.579954
Husen H, Iqbal M (2019) Nanomaterials and plant potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1
Husen H, Jawaid M (2020) Nanomaterials for agriculture and forestry applications. Elsevier, Cambridge. https://doi.org/10.1016/C2018-0-02349-X
Husen H (2021) Harsh environment and plant resilience (Molecular and Functional Aspects). Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7
Husen H (2021) Plant performance under environmental stress (Hormones, Biostimulants and Sustainable Plant Growth Management). Springer, Cham. https://doi.org/10.1007/978-3-030-78521-5
Bachheti RK, Fikadu A, Bachheti A, Husen A (2020) Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci 27:2551–2562. https://doi.org/10.1016/j.sjbs.2020.05.012
Sonika D, Saurav K, Aakash G, Uttam L, Ranjita T, Shankar J, Ganesh L, Deval PB, Niranjan P (2021) Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomat 2021:6687290. https://doi.org/10.1155/2021/6687290
Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3
Salem SS, Fouda MMG, Fouda A (2021) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32:351–361. https://doi.org/10.3390/jof7050372
Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Environmental health risk-hazardous factors to living species 2016, p 16. https://doi.org/10.5772/63094
Titir G, Geetha G, Rita K, Amitava M (2020) Nanocomposites for delivering agrochemicals: a comprehensive review. J Agric Food Chem 68:3691–3702. https://doi.org/10.1021/acs.jafc.9b06982
Aouada FA, de Moura MR, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985. https://doi.org/10.1002/app.30339
Bortolin A, Aouada FA, de Moura MR, Ribeiro C, Longo E, Mattoso LHC (2012) Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J Appl Polym Sci 123:2291–2298. https://doi.org/10.1002/app.34742
Wanyika H (2014) Controlled release of agrochemicals intercalated into montmorillonite interlayer space. Sci World J 2014(1–15):656287. https://doi.org/10.1155/2014/656287
Cartmill AD, Cartmill DL, Alarcon A (2014) Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Int J Phytorem 16:285–301. https://doi.org/10.1080/15226514.2013.773280
Carson LC, Ozores-Hampton M, Morgan KT, Sargent SA (2014) Effect of controlled-release and soluble fertilizer on tomato production and postharvest quality in seepage irrigation. Hort Sci 49:89–95. https://doi.org/10.21273/HORTSCI.49.1.89
Sopena F, Maqueda C, Morillo E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Cienc Investig Agrar 35:27–42. https://doi.org/10.4067/S0718-16202009000100002
Aouada FA, de Moura MR (2015) Nanotechnology applied in agriculture: controlled release of agrochemicals. In: Rai M, et al (eds) Nanotechnologies in food and agriculture. Springer. https://doi.org/10.1007/978-3-319-14024-7
Stloukal P, Kucharczyk P, Sedlarik V, Bazant P, Koutny M (2012) Low molecular weight polyijlactic acid) microparticles for controlled release of the herbicide metazachlor: preparation, morphology, and release kinetics. J Agric Food Chem 60:4111–4119. https://doi.org/10.1021/jf300521j
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731–3951. https://doi.org/10.3390/molecules25163731
Fu JX, Wang HJ, Zhou YQ, Wang JY (2009) Antibacterial activity of ciprofloxacin-loaded zein microsphere films. Mater Sci Eng 29:1161–1166. https://doi.org/10.1016/j.msec.2008.09.031
Hou Y, Hu J, Park H, Lee M (2012) Chitosan based nanoparticles as a sustained protein release carrier for tissue engineering applications. J Biomed Mater Res Part A 100:939–947. https://doi.org/10.1002/jbm.a.34031
Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V (2018) Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610. https://doi.org/10.3389/fphar.2018.00610
Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Somoghi R, Gabor AR, Preda S, Nistor CL, Nitu S, Petcu C, Icriverzi M, Florian PE, Roseanu AM (2017) Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. NANO 7:443. https://doi.org/10.3390/nano7120443
Zheng M, Falkeborg M, Zheng Y, Yang T, Xu X (2013) Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surf Physicochem Eng Asp 430:76–84. https://doi.org/10.1016/j.jconrel.2013.01.018
Chawla JS, Amiji MM (2002) Biodegradable poly (ε- caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 249:127–138. https://doi.org/10.1016/s0378-5173(02)00483-0
Orellana-Tavra C, Baxter EF, Tian T, Bennett TD, Slater NKH, Cheetham AK, Fairen-Jimenez D (2015) Amorphous metal-organic frameworks for drug delivery. Chem Commun 51:13878–13881. https://doi.org/10.1039/c5cc05237h
Lin G, Chen X, Zhou H, Zhou X, Xu H, Chen H (2019) Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting ph sensitivity for sustained pesticide release. J Appl Polym Sci 136:47160. https://doi.org/10.1002/app.47160
Henchion M, McCarthy M, Dillon EJ (2019) Big issues for a small technology: consumer trade-offs in acceptance of nanotechnology in food. Innov Food Sci Emerg Technol 58:102210. https://doi.org/10.1016/j.ifset.2019.102210
Kamaraj C, Gandhi PR, Elango G, Karthi S, Chung IM, Rajakumar G (2018) Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nanoformulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int J Biol Macromol 107:59–69. https://doi.org/10.1016/j.ijbiomac.2017.08.145
Vishnu D, Tatiana M, Arvind B, Svetlana NS, Saglara M, Ritu S, Andrey G, Viktoriia ST, William OP, Karen AG, Hasmik SM (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotech Monitor Manag 9:76–84. https://doi.org/10.1016/j.enmm.2017.12.006
Zoya J, Kavya D, Mansi M, Vinayak DF, Ayushi S (2019) Effect of accumulation of nanoparticles in soil health- a concern on future. Front Nanosci Nanotech. https://doi.org/10.15761/FNN.1000182
Zand AD, Tabrizi AM, Heir AV (2020) Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environ Technol Innov 20:101134. https://doi.org/10.1016/j.eti.2020.101134
Kremer RJ (2020) Bioherbicides and nanotechnology: current status and future trends. In: Nano-biopesticides today and future perspectives, Academic Press, pp 353–366. https://doi.org/10.1016/B978-0-12-815829-6.00015-2
Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 12:12539–12547. https://doi.org/10.1021/es4034809
Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540. https://doi.org/10.1038/s41565-019-0439-5
Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Musarrat J (2020) Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega 5:7861–7876. https://doi.org/10.1021/acsomega.9b04084
Kremer RJ (2020) Bioherbicides and nanotechnology: current status and future trends. In: Nano-biopesticides today and future perspectives. Academic Press, pp 353–366. https://doi.org/10.1016/B978-0-12-815829-6.00015-2.
Youssef MS, Elamawi RM (2018) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in V. faba. Environ Sci Pollut Res Int 5:1–13. https://doi.org/10.1007/s11356-018-3250-1
Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash PC, Fraceto LF, Lima R (2017) Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421. https://doi.org/10.1038/srep44421
Nafees M, Ali S, Rizwan M, Aziz A, Adrees M, Hussain S, Junaid M (2020) Effect of nanoparticles on plant growth and physiology and on soil microbes. In: Nanomaterials and environmental biotechnology. Springer, Cham, pp. 65–85. https://doi.org/10.1007/978-3-030-34544-0_5
Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102. https://doi.org/10.1016/j.scitotenv.2016.08.120
Ullah H, Li X, Peng L, Cai Y, Mielke HW (2020) In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Z. mays L.) plants. Sci Total Environ 737:139558. https://doi.org/10.1016/j.scitotenv.2020.139558
Sharif-Rad J, Sharif-Rad M, Teixeira da Silva JA (2016) Morphological, physiological and biochemical responses of crops (Z. mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. J Agric Sci Technol 18:1027–1040
Rezaei S, Ariaii P, Charmchian LM (2020) The effect of encapsulated plant extract of hyssop (Hyssopus officinalis L.) in biopolymer nanoemulsions of Lepidium perfoliatum and Orchis mascula on controlling oxidative stability of soybean oil. Food Sci Nutr 8:1264–1271. https://doi.org/10.1002/fsn3.1415
Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and them in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012
Choudhary RC, Kumaraswamy R, Kumari S, Sharma S, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Z. mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0
Maluin FN, Hussein MZ (2020) Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules 25:1611. https://doi.org/10.3390/molecules25071611
Pereira A, Sandoval-Herrera I, Zavala-Betancourt S, Oliveira H, Ledezma-Pérez A, Romero J, Fraceto L (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073
Mansoor N, Younus A, Jamil Y, Shahid M (2019) Impact of nanosized and bulk ZnO on germination and early growth response of T. aestivum. Pak J Agric Sci 56:879–884
Spielman-sun E, Avellan A, Bland GD, Tappero RV, Acerbo AS, Unrine JM, Giraldo JP, Lowry GV (2019) Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ Sci Nano 6:2508–2519. https://doi.org/10.1039/C9EN00626E
Ghorbani R, Movafeghi A, Gangeali A, Nabati J (2021) Effects of TiO2 nanoparticles on morphological characteristics of chickpea (Cicer arietinum L.) under drought stress. Environ Stresses Crop Sci 14:85–98. https://doi.org/10.22077/ESCS.2020.2485.1654
Kandil MAH, Sammour EA, Abdel-Aziz NF (2020) Comparative toxicity of new insecticides generations against tomato leafminer Tuta absoluta and their biochemical effects on tomato plants. Bull Natl Res Cent 44:126. https://doi.org/10.1186/s42269-020-00382-0
Zhang DX, Li BX, Zhang XP, Zhang ZQ, Wang WC, Liu F (2016) Phoxim microcapsules prepared with polyurea and urea–formaldehyde resins differ in photostability and insecticidal activity. J Agric Food Chem 64:2841–2846. https://doi.org/10.1021/acs.jafc.6b00231
Wibowo D, Zhao CX, Peters BC, Middelberg AP (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 12:504–511. https://doi.org/10.1021/jf504455x
Pasquoto-Stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, Guilger M, Troost J, Oliveira HC, Stolf-Moreira R, Fraceto LF, de Lima R (2017) Nanocapsules containing neem (Azadirachta indica) oil: development, characterization, and toxicity evaluation. Sci Rep 7:5929. https://doi.org/10.1038/s41598-017-06092-4
Sebastian A, Nangia A, Prasad MNV (2019) Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. Bark: relevance in amelioration of metal stress in rice. J Hazard Mater 371:261–272. https://doi.org/10.1016/j.jhazmat.2019.03.021
Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325. https://doi.org/10.1016/j.carbpol.2016.05.033
Xing K, Liu Y, Shen X, Zhu X, Li X, Miao X, Qin S (2017) Effect of O-chitosan nanoparticles on the development and membrane permeability of Verticillium dahliae. Carbohydr Polym 165:334–343. https://doi.org/10.1016/j.carbpol.2017.02.063
Kumaraswamy RV, Kumari S, Choudhary RC, Sharma SS, Pal A, Raliya R, Saharan V (2019) Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202
Cao L, Zhang H, Cao C, Zhang J, Li F, Huang Q (2016) Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomater 6:126. https://doi.org/10.3390/nano6070126
Luque-Alcaraz AG, Cortez-Rocha MO, Velázquez-Contreras CA, Acosta-Silva AL, Santacruz-Ortega HDC, Burgos-Hernández A, Argüelles-Monal WM, Plascencia-Jatomea M (2016) Enhanced antifungal effect of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Asppergillus parasiticus Spores. J Nanomat 1:1–10. https://doi.org/10.1007/s11356-020-10716-0
Ngoc UTP, Nguyen DH (2018) Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum. Green Proc Synth 7:132–138. https://doi.org/10.1515/gps-2016-0206
Ahmad J, Qamar S, Kausar N, Qureshi MI (2020). Nanoparticles: the magic bullets in mitigating drought stress in plants. In: Nanobiotechnology in agriculture. Springer, Cham, pp 145–161. https://doi.org/10.1007/978-3-030-39978-8_8
Singh S, Husen A (2020) Behavior of agricultural crops in relation to nanomaterials under adverse environment al conditions. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier, Cambridge, pp 219–256. https://doi.org/10.1016/B978-0-12-817852-2.00009-3
Husen A (2021) The Harsh environment and resilient plants: an overview. In: Husen A (Eds.) Harsh environment and plant resilience, pp 1–23. https://doi.org/10.1007/978-3-030-65912-7_1
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ 738:140240. https://doi.org/10.1016/j.scitotenv.2020.140240
Van HC, Van ND, Nguyen HM, Le NT, Nguyen KH, Le HM (2020) Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. bioRxiv. https://doi.org/10.1101/2020.02.24.963132
An J, Hu P, Li F, Wu H, Shen Y, White JC, Giraldo JP (2020) Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano 7:2214–2228. https://doi.org/10.1039/D0EN00387E
Attia MS, Osman MS, Mohamed AS, Mahgoub HA, Garada MO, Abdelmouty ES (2021) Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants 10:388. https://doi.org/10.3390/plants10020388
Sikder RK, Wang X, Zhang H, Gui H, Dong Q, Jin D, Song M (2020) Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants 9:450. https://doi.org/10.3390/plants9040450
Ioannou A, Gohari G, Papaphilippou P, Panahirad S, Akbari A, Dadpour MR, Fotopoulos V (2020) Advanced nanomaterials in agriculture under a changing climate: the way to the future? Environ Exp Bot 176:104048. https://doi.org/10.1016/j.envexpbot.2020.104048
Khan N, Bano AMD, Babar A (2020) Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE 15:e0231426. https://doi.org/10.1371/journal.pone.0231426
Soliman M, Qari SH, Abu-Elsaoud A, El-Esawi M, Alhaithloul H, Elkelish A (2020) Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant 42:1–16. https://doi.org/10.3390/plants10040790
Shoemaker AG (2020) The effects of titanium dioxide nanoparticles on the growth and development of Sorghum Bicolor (L.) Moenech. Adv Agric Hortic Entomol 132:1–15
Maruyama CR, Guilger M, Pascoli M, Bileshy-José M (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/srep19768
Preisler AC, Pereira AES, Campos EVR, Dalazen G, Fraceto LF, Oliveira HC (2020) Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Manag Sci 76:141–149. https://doi.org/10.1002/ps.5482
Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:1–6. https://doi.org/10.1007/s10311-019-00912-x
Xiang Y, Zhang G, Chi Y, Cai D, Wu Z (2017) Fabrication of a controllable nanopesticide system with magnetic collectability. Chem Eng J 328:320–330. https://doi.org/10.1021/acssuschemeng.7b00348
Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52:1908–1918. https://doi.org/10.1021/acs.est.7b05389
Zhai Y, Hunting ER, Wouters M, Peijnenburg WJGM, Vijver MG (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol 7:1123. https://doi.org/10.3389/fmicb.2016.01123
Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444. https://doi.org/10.3390/ijms19020444
VandeVoort AR, Skipper H, Arai Y (2014) Macroscopic assessment of nanosilver toxicity to soil denitrification kinetics. J Environ Qual 43:1424–1430. https://doi.org/10.2134/jeq2013.12.0524
El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49. https://doi.org/10.1002/tox.20610
Li F, Chen Y, Tang DM, Jian Z, Liu C, Golberg D, Yamada A, Zhou H (2014) Performance-improved Li–O 2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ Sci 7:1648–1652. https://doi.org/10.1039/C3EE44043E
Dogaroglu ZG, Koleli N (2014) Effect of different zinc oxide nanoparticles on germination, plant growth and chlorophyll content of wheat. In: International congress on green infrastructure and sustainable socities/cities greinsus, p 78. https://doi.org/10.13254/j.jare.2020.0099
Scherer MD, Sposito JC, Falco WF, Grisolia AB, Andrade LH, Lima SM, Machado G, Nascimento VA, Gonçalves DA, Wender H, Oliveira SL (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ 660:459–467. https://doi.org/10.1016/j.scitotenv.2018.12.444
Galazzi RM, Arruda MAZ (2018) Evaluation of changes in the macro and micronutrients homeostasis of transgenic and non-transgenic soybean plants after cultivation with silver nanoparticles through ionomic approaches. J Trace Elem Med Biol 48:181–187. https://doi.org/10.1016/j.jtemb.2018.04.004
Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215. https://doi.org/10.1016/j.jhazmat.2014.01.025
Latef AAHA, Zaid A, Alhmad MFA, Abdelfattah KE (2020) The impact of priming with Al2O3 nanoparticles on growth, pigments, osmolytes, and antioxidant enzymes of Egyptian Roselle (Hibiscus sabdariffa L.) cultivar. Agronomy 10:681. https://doi.org/10.3390/agronomy10050681
Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7:e34783. https://doi.org/10.1371/journal.pone.0034783
Ahmadi SZ, Ghorbanpour M, Aghaee A, Hadian J (2020) Deciphering morpho-physiological and phytochemical attributes of Tanacetum parthenium L. plants exposed to C60 fullerene and salicylic acid. Chemosphere 259:127406. https://doi.org/10.1016/j.chemosphere.2020.127406
Caldelas MC, Poitrasson F, Viers J, Araus OJL (2020) Stable Zn isotopes reveal the uptake and toxicity of zinc oxide engineered nanomaterials in Phragmites australis. Environ Sci Nano 7:1927–1941. https://doi.org/10.1039/D0EN00110D
Lombi E, Donner E, Dusinska M (2019) One health approach to managing the applications and implications of nanotechnologies in agriculture. Nat Nanotechnol 14:523–531. https://doi.org/10.1038/s41565-019-0460-8
Mitter N, Hussey K (2019) Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotech 14:508–510. https://doi.org/10.1038/s41565-019-0464-4
Hong JR (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385. https://doi.org/10.1021/es404931g
Torre-Roche RDL (2012) Fullerene-enhanced accumulation of p, p’-DDE in agricultural crop species. Environ Sci Technol 46:9315–9323. https://doi.org/10.1021/es301982w
Pejam F, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021) Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS ONE 16(3):e0248778. https://doi.org/10.1371/journal.pone.0248778
Prażak R, Święciło A, Krzepiłko A, Michałek S, Arczewska M (2020) Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture 10:312. https://doi.org/10.3390/agriculture10080312
Sebastian A, Prasad MNV (2015) Trace element management in rice. Agron 5:374–404. https://doi.org/10.3390/agronomy5030374
Khan NM, Mobin M, Zahid A, Alamri S (2018) Fertilizers and their contaminants in soils, surface, and groundwater. Encycl Anthropocene 5:225–240. https://doi.org/10.1016/B978-0-12-409548-9.09888-2
Sebastian A, Nangia A, Majeti N, Vara P (2020) Advances in agrochemical remediation using nanoparticles Agrochemicals Detection. Treat Remediat. https://doi.org/10.1016/B978-0-08-103017-2.00018-0465-484
Al-Barly AMF, Hamza RZ (2015) Larvicidal, ani-oxidant activities and perturbation of transaminases activities of titanium dioxide nanoparticles synthesized using Moringa oleifera leaves extract against the red palm weevil (Rhynchophorus ferrugineus). Eur J Pharm Med Res 2:49–54. https://doi.org/10.1080/21691401.2017.1408121
Christofoli M, Costa ECC, Bicalho KU, de Cassia DV, Peixoto MF, Alves CCF, de Melo CC (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod 70:301–308. https://doi.org/10.1016/j.indcrop.2015.03.025
Aseri A, Garg SK, Nayak A, Trivedi SK, Mohamed A (2015) Magnetic nanoparticles: magnetic nano-technology using biomedical applications and prospects. Int J Pharm Sci Rev Res 31:119–131. https://doi.org/10.1002/adhm.201700845
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B (2021) Surface properties and environmental transformations controlling the bioaccumulation and toxicity of cerium oxide nanoparticles: a critical review. Rev Environ Contam Toxicol 253:155–206. https://doi.org/10.1007/398_2020_42
Grillo R, de Melo NF, de Araújo DR, de Paula E, Rosa AH, Fraceto LF (2010) Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target 18:688–699. https://doi.org/10.3109/10611861003649738
Clemente Z, Castro VL, Moura MA, Jonsson CM, Fraceto LF (2014) Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 147:129–139. https://doi.org/10.1016/j.aquatox.2013.12.024
Ahsan SM, Rao CM, Ahmad MF (2018) Nanoparticle-protein interaction: the significance and role of protein corona. Adv Exp Med Biol 1048:175–198. https://doi.org/10.1007/978-3-319-72041-8_11
Severino P, da Silva CF, Andrade LN, de Lima OD, Campos J, Souto EB (2019) Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 25:1312–1334. https://doi.org/10.2174/1381612825666190425163424
Silva AM, Alvarado HL, Abrego G, Martins-Gomes C, Garduño-Ramirez ML, García ML, Calpena AC, Souto EB (2019) In vitro cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics 11:362. https://doi.org/10.3390/pharmaceutics11080362
Kubavat D, Trivedi K, Vaghela P, Prasad K, Vijay Anand GK, Trivedi H, Ghosh A (2020) Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Z. mays L. Land Degrad Dev 31:2734–2746. https://doi.org/10.1002/ldr.3629
El-Gazzar N, Almaary K, Ismail A, Polizzi G (2020) Influence of Funneliformis mosseae enhanced with titanium dioxide nanoparticles (TiO2NPs) on Phaseolus vulgaris L under salinity stress. PLoS ONE 15:e0235355. https://doi.org/10.1371/journal.pone.0235355
Zayed MF, Eisa WH, Hezma AM (2017) Spectroscopic and antibacterial studies of anisotropic gold nanoparticles synthesized using Malva parviflora. J Appl Spect 83:1046–1050. https://doi.org/10.1007/s10812-017-0406-6
Esyanti RR, Farah N, Bajra BD, Nofitasari D, Martien R, Sunardi S, Safitri R (2020) Comparative study of nano-chitosan and synthetic bactericide application on chili pepper (Capsicum annuum L.) infected by Xanthomonas campestris. Agrivita 42:13. https://doi.org/10.17503/agrivita.v42i1.1283
Shahhoseini R, Azizi M, Asili J, Moshtaghi N, Samiei L (2020) Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip.). Acta Physiol Plant 42:1–18. https://doi.org/10.1007/s11738-020-03043-x
Muthukrishnan S, Murugan I, Selvaraj M (2019) Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr Polym 212:169–177. https://doi.org/10.1016/j.carbpol.2019.02.037
Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L (2019) Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ Sci Technol 53:6007–6017. https://doi.org/10.1021/acs.est.9b00593
Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M (2020) Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak in vitro. Chemosphere 249:126069. https://doi.org/10.1016/j.chemosphere.2020.126069
Mondal AH, Yadav D, Ali A, Khan N, Jin JO, Haq QMR (2020) Anti-bacterial and anti-candidal activity of silver nanoparticles biosynthesized using Citrobacter spp MS5 culture supernatant. Biomolecules 10:944. https://doi.org/10.3390/biom10060944
Tailor G, Yadav BL, Chaudhary J, Joshi M, Suvalka C (2020) Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Biophys Rep 24:100848. https://doi.org/10.1016/j.bbrep.2020.100848
Francisco J, Frank LWT (2020) Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00037
Madany MM, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H (2020) Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ Sci Nano 7:1415–1430. https://doi.org/10.1039/C9EN01255A
Enyedi NT, Makk J, Kótai L (2020) Cave bacteria-induced amorphous calcium carbonate formation. Sci Rep 10:8696. https://doi.org/10.1038/s41598-020-65667-w
Baran M, Keskin C, Atalar M, Baran A (2020) Environmentally friendly rapid synthesis of gold nanoparticles from Artemisia absinthium plant extract and application of antimicrobial activities. J Inst Sci Technol 11:365–375. https://doi.org/10.21597/jist.779169
Tan S, Wu X, Xing Y, Lilak S, Wu M, Zhao JX (2020) Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf B: Biointerfaces 185:110616. https://doi.org/10.1016/j.colsurfb.2019.110616
Ali M, Ahmed T, Wu W, Hossain A, Hafeez R, Islam M, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146. https://doi.org/10.3390/nano10061146
Orzali L, Valente MT, Scala V, Loreti S, Pucci N (2020) Antibacterial activity of essential oils and Trametes versicolor extract against Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum for seed treatment and development of a rapid in vivo assay. Antibiotics 9:628. https://doi.org/10.3390/antibiotics9090628
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Ji R (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68:1935–1947. https://doi.org/10.1021/acs.jafc.9b06615
Asma N, Mudassar I, Crispin H, Hassan W (2020) Biogenic AgNPs—a nano weapon against bacterial canker of tomato (bct). Adv Agric 2020(1–11):9630785. https://doi.org/10.1155/2020/9630785
Sonika D, Saurav K, Aakash G, Uttam L, Ranjita T, Shankar J, Ganesh L, Deval PB, Niranjan P (2021) Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomat. https://doi.org/10.1155/2021/6687290
Jyoti K, Arora D, Fekete G, Lendvai L, Dogossy G, Singh T (2020) Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Mater Technol 1:11. https://doi.org/10.1080/10667857.2020.1802841
Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R (2020) In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci Nano 7:610–622. https://doi.org/10.1039/C9EN00690G
Sahu S, Mishra M (2020) Hydroxyapatite nanoparticle causes sensory organ defects by targeting the retromer complex in Drosophila melanogaster. NanoImpact 19:100237. https://doi.org/10.1016/j.impact.2020.100237
Demir E (2020) An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J Toxicol Environ Health, Part A 83:456–469. https://doi.org/10.1080/15287394.2020.1777236
Kumar D, Kumar P, Singh H (2020) Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environ Sci Pollut Res 27:25987–26024. https://doi.org/10.1007/s11356-020-08444-6
Faraji J, Sepehri A (2020) Exogenous nitric oxide improves the protective effects of tio 2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. J Soil Sci Plant Nutr 20:703–714. https://doi.org/10.1007/s42729-019-00158-0
Tombuloglu H, Anıl I, Akhtar S, Turumtay H, Sabit H, Slimani Y, Baykal A (2020) Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Sci Hortic 265:109223. https://doi.org/10.3390/nano10091654
Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanosc Res Lett 12:60. https://doi.org/10.1186/s11671-017-1839-9
Kolbert Z, Szőllősi R, Feigl G, Kónya Z, Rónavári A (2021) Nitric oxide signalling in plant nanobiology: current status and perspectives. J Exp Bot 72:928–940. https://doi.org/10.1093/jxb/eraa470
Soliman M, Qari SH, Abu-Elsaoud A, El-Esawi M, Alhaithloul H, Elkelish A (2021) Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant 42:1–16. https://doi.org/10.3390/plants9040431
Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020) Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:558. https://doi.org/10.3390/agronomy10040558
Hoffmann J, Berni R, Hausman JF, Guerriero G (2020) A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules 10:1284. https://doi.org/10.3390/biom10091284
Zahedi SM, Karimi M, da Teixeira SJA (2020) The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric 100:25–31. https://doi.org/10.1002/jsfa.10004
Mahmoud LM, Dutt M, Shalan AM, El-Kady ME, El-Boray MS, Shabana YM (2020) Silicon nanoparticles mitigate oxidative stress of in vitroderived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South Afr J Bot 132:155–163. https://doi.org/10.1016/j.sajb.2020.04.027
Ye Y, Cota-Ruiz K, Hernández-Viezcas JA, Valdés C, Medina-Velo IA, Turley RS (2020) Manganese nanoparticles control salinity modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain Chem Eng 8:1427–1436. https://doi.org/10.1021/acssuschemeng.9b05615
Shoemaker AG (2020) The effects of titanium dioxide nanoparticles on the growth and development of Sorghum Bicolor (L.) Moenech. Adv Agric Hortic Entomol. https://doi.org/10.37722/AAHAE.202052
Thomas TD, Dinakar C, Puthur JT (2020) Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: priming imprints and cross-tolerance. Plant Physiol Biochem 147:21–30. https://doi.org/10.1016/j.plaphy.2019.12.002
Kardavan GV, Karamian R (2020) Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Bot Croat. https://doi.org/10.37427/botcro-2020-025
Iqbal MS, Singh AK, Singh SP, Ansari MI (2020) Nanoparticles and plant interaction with respect to stress response. Nano Environ Biotechnol. https://doi.org/10.1007/978-3-030-34544-0_1
Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537. https://doi.org/10.1016/j.geoderma.2014.06.012
Jośko I, Dobrzyńska J, Dobrowolski R, Kusiak M, Terpiłowski K (2020) The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils. Sci Total Environ 721:137771. https://doi.org/10.1016/j.scitotenv.2020.137771
Dogaroglu ZG, Koleli N (2014) Effect of different zinc oxide nanoparticles on germination, plant growth and chlorophyll content of wheat. In: International congress on green infrastructure and sustainable socities/cities greinsus, vol 14, pp 78–84. https://doi.org/10.1080/02772248.2013.803796
Heikal YM, Şuţan NA, Rizwan M, Elsayed A (2020) Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere 243:125430. https://doi.org/10.1016/j.chemosphere.2019.125430
Taheri SM, Aramideh S, Akbarian J, Pirsa S (2020) Effects of ZnO nanoparticles and kaolin in combination with Neem Azal-T/S against Bemisia tabaci and its parasitoid Eretmocerus mundus on cotton. Chem Rev Lett 3:131–139. https://doi.org/10.22034/CRL.2020.235381.1066
Hafiz UR, Waqas A, Wahab N, Mansur AS, Anwaar A, Nauman K (2021) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ 755:142649. https://doi.org/10.1016/j.scitotenv.2020.142649
Lozano-Pérez AA, Pagán A, Zhurov V (2020) The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. Sci Rep 10:18471. https://doi.org/10.1038/s41598-020-74766-7
Sun C, Yu M, Zeng Z, Francis F, Cui H, Verheggen F (2020) Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera: Aphididae) and the aphid predator Adalia bipunctata (Coleoptera: Coccinellidae). PLoS ONE 15:e0228817. https://doi.org/10.1371/journal.pone.0228817
Singh BK, Pandey R, Singh AK, Mishra MK (2020) Effectiveness of flonicamid 50 wg and flupyradifurone 200 SL against leafhopper and whitefly in okra. J Entomol Zool Stud 8:181–185
Sabbour MMA (2020) Efficacy of nano-formulated certain essential oils on the red flour beetle Tribolium castaneum and confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae) under laboratory and storage conditions. Bull Natl Res Cent 44:111. https://doi.org/10.1186/s42269-020-00336-6
Raveau R, Fontaine J, Lounès H, Sahraoui A (2020) Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9:365. https://doi.org/10.1186/s42269-020-00336-6
Nazima S, Prasanta KR, Diganta G, Dipankar D, Saidul I, Varun T, Bodhaditya D, Hemanta KG, Pronobesh C, Pakalapati SR (2020) Bio-nanoparticle assembly: a potent on-site biolarvicidal agent against mosquito vectors. RSC Adv 10:9356–9368. https://doi.org/10.1039/C9RA09972G
Ikawati S, Himawan T, Abadi AL, Tarno H (2020) Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). J Pest Sci 46:222–228. https://doi.org/10.1584/jpestics.D20-059
Leslie B, Mark M, Leonard L, Matteo S (2020) Efficacy of various herbicides for the control of perennial Plantago spp. and effects on alfalfa damage and yield. Agronomy 10:1710. https://doi.org/10.3390/agronomy10111710
Thongpitak J, Pumas P, Pumas C (2020) Paraquat degradation by biological manganese oxide (BioMnOx) catalyst generated from living microalga pediastrum duplex AARL G060. Front Microbiol 11:575361. https://doi.org/10.3389/fmicb.2020.575361
Francisco CF, María EAG, Claudia LA, Balam RR, Roberto LVG, Patricia RC, Rocío ACS, Alexey P, Yanis TM, Juan CGR, Nina B (2020) ArgovitTM silver nanoparticles effects on Allium cepa: plant growth promotion without cyto genotoxic damage. Nanomaterials 10:1386. https://doi.org/10.3390/nano10071386
Broda M (2020) Natural compounds for wood protection against fungi—a review. Molecules 25:3538. https://doi.org/10.3390/molecules25153538
Kıvrak I, Kivrak S, Karababa E (2020) Assessment of bioactive compounds and antioxidant activity of turkey tail medicinal mushroom Trametes versicolor (Agaricomycetes). Int J Med Mushrooms 22:559–571. https://doi.org/10.1615/IntJMedMushrooms.2020035027
Cui J, Sun C, Wang A, Wang Y, Zhu H, Shen Y, Li N, Zhao X, Cui B, Wang C, Gao F, Zeng Z, Cui H (2020) Dual-functionalized pesticide nanocapsule delivery system with improved spreading behavior and enhanced bioactivity. Nanomaterials 10:220. https://doi.org/10.3390/nano10020220
Luis AP, Ana AFP, Ramón G, Sandra M, Karen E (2020) Nanoparticles in agroindustry: applications, toxicity, challenges, and trends. Nanomaterials 10:1654. https://doi.org/10.3390/nano10091654
Marcela VH, Israel MB, Ramon GG, Enrique RG, Rosalia VOV, Luciano AJ, Irineo TP (2020) Nanoparticles as potential antivirals in agriculture. Agriculture 10:444. https://doi.org/10.3390/agriculture10100444
Arshad A, Temoor A, Wenge W, Afsana H, Rahila H, Md. Mahidul IM, Yanli W, Qianli A, Guochang S, Bin L (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146. https://doi.org/10.3390/nano10061146
Pieła A, Żymańczyk DE, Brzezińska RM, Duda M, Grzesiak J, Saeid A, Klimek OM (2020) Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing. Bioorg Chem 99:103773. https://doi.org/10.1016/j.bioorg.2020.103773.
Hafez YM, Attia KA, Kamel S, Alamery SF, El-Gendy S, Al-Doss AA, Abdelaal KA (2020) Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiol Mol Plant Pathol 111:101489. https://doi.org/10.1016/j.pmpp.2020.101489