Assessment of the pesticidal behaviour of diacyl hydrazine-based ready-to-use nanoformulations

Alka Pandey1, Shivani Srivastava2, Nisha Aggarwal3, Chitra Srivastava4, Alok Adholeya1,2,5, Mandira Kochar5
1National Centre of Excellence for Advanced Research in Agriculture Nanotechnology, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gurugram, India
2Centre for Mycorrhizal Research, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gurugram, India
3Department of Chemistry, Dayal Singh College, University of Delhi, New Delhi, India
4Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
5TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gurugram, India

Tóm tắt

Application of nanotechnology for crop protection in the form of nanopesticide has attracted significant interest in modern agriculture for the management of devastating polyphagous pests. In the present work, highly stable, ready-to-use water-based nanoformulations of hydrazine-based pesticides were evaluated for their Insect Growth Regulatory potential against the polyphagous insect pest—Spodoptera litura. Also, the nanoformulations were screened for their antifungal behaviour against plant pathogenic fungi; Colletotrichum gloeosporioides, Rhizoctonia solani, Fusarium solani, and Alternaria solani. Nanoformulation of sulfonyl acyl hydrazine derivative, NF7, emerged as the best insect growth regulator with GI90 value 0.010 mg L−1 followed by NF4 and NF6 with GI90 0.012 and 0.013 mg L−1, respectively. Results of diet incorporation method showed enhanced efficacy of nanoformulations when compared with topical application method. Antifungal screening showed that many nanoformulations displayed at least 50% growth inhibition for treatment dosage 50–200 mg L−1 against the fungal pathogens tested (C. gloeosporioides, R. solani, F. solani, and A. solani). NF6, NF7, and NF8 were more potent antifungal agents at lower treatment dosages, while at high doses (400 and 800 mg L−1), 100% growth inhibition at concentration was observed against R. solani and F. solani, except NF1 having 64% growth inhibition against F. solani. Results presented here are very promising and deliver new nanoformulations of diacyl and sulfonyl acyl hydrazine-based derivatives to be employed as nanopesticide for sustainable crop protection.

Tài liệu tham khảo

Ragaei M, Sabry AH. Nanotechnology for insect pest control. Int J Sci Env Tech. 2014;3:528–45. Prasad R, Kumar V, Prasad KS. Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol. 2014;13:705–13. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 2017;8:1014. Dasgupta N, Ranjan S, Ramalingam C. Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. 2017;15:591–605. Manjunatha SB, Biradar DP, Aladakatti YR. Nanotechnology and its applications in agriculture: a review. J Farm Sci. 2016;29:1–13. Servin AD, White JC. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact. 2016;1:9–12. Chen C, Unrine JM, Judy JD, Lewis RW, Guo J, McNear DH, Tsyusko OV. Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials (TiO2, Ag, and ZnO) from a pilot waste water treatment plant. Environ Sci Technol. 2015;49:8759–68. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009;53(1):52–62. Presidential Green Chemistry Challenge: 1998—Designing greener chemicals award. Rohm & Haas Company (now a subsidiary of The Dow Chemical Company) 1998. https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-1998-designing-greener-chemicals-award. Accessed 27 Dec 2018. Wang Y, Xu F, Yu G, Shi J, Li C, Dai A, Liu Z, Xu J, Wang F, Wu J. Synthesis and insecticidal activity of diacyl hydrazine derivatives containing a 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole scaffold. Chem Cent J. 2017;11:50. Wang X, Fu X, Yan J, Wang A, Wang M, Chen M, Yang C, Song Y. Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N′-phenylacethydrazide derivatives as potential fungicides. Mol Divers. 2018;1:11. Yu G, Luo L, Chen S, He F, Xie Y, Luo D, Xue W, Wu J. Synthesis and insecticidal activity of novel diacyl hydrazines derivatives containing a N-pyrazolepyrazole moiety. Chem Select. 2018;3:10991–5. Dhadialla TS, Carlson GR, Le DP. New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol. 1998;43:545–69. Smagghe G, Gomez LE, Dhadialla TS. Bisacylhydrazine insecticides for selective pest control. In: Dhadialla TS, editor. Advances in Insect Physiology. New York: Elsevier; 2012. p. 163–249. United States Environmental Protection Agency. Pesticide registration, Reduced Risk and Organophosphate Alternative Decisions for Conventional Pesticides 2018. https://www.epa.gov/pesticide-registration/reduced-risk-and-organophosphate-alternative-decisions-conventional. Accessed 27 Dec 2018. Gomez LE, Hastings K, Yoshida HA, Dripps JE, Bailey J, Rotondaro S, Knowles S, Paroonagian DL, Dhadialla TS, Boucher R. The bisacylhydrazine insecticides in Green Trends. In: Lopez O, Fernandez-Bolanos JG, Clark JH, Kraus GA, editors. Insect Control (Green Chemistry Series). Cambridge: RSC publishing; 2011. p. 213–47. Kumar J, Shakil NA, Singh MK, Singh P, Pandey A, Pandey RP. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers. J Environ Sci Health Part B. 2010;45:310–4. Pankaj SN, Shakil NA, Kumar J, Singh MK, Singh MK. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B. 2012;47:520–8. Han X, Balakrishnan VK, VanLoon GW, Buncel E. Degradation of the pesticide fenitrothion as mediated by cationic surfactants and α-nucleophilic reagents. Langmuir. 2006;22:9009–17. Adak T, Kumar J, Shakil NA, Walia S. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B. 2012;47:217–25. Wibowo D, Zhao CX, Peters BC, Middelberg AP. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem. 2014;62:12504–11. Zeng H, Li XF, Zhang GY, Dong JF. Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J Dispersion Sci Technol. 2008;29:358–61. Majumder S, Shakil NA, Kumar J, Banerjee T, Sinha P, Singh BB, Garg P. Eco-friendly PEG-based controlled release nano-formulations of Mancozeb: synthesis and bioefficacy evaluation against phytopathogenic fungi Alternaria solani and Sclerotium rolfsii. J Environ Sci Health B. 2016;51:873–80. Kaushik P, Shakil NA, Kumar J, Singh MK, Singh MK, Yadav SK. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B. 2013;48:677–85. Kumar R, Nair KK, Alam MI, Gogoi R, Singh PK, Srivastava C, Gopal M, Goswami A. Development and quality control of nanohexaconazole as an effective fungicide and its biosafety studies on soil nitifiers. J Nanosci Nanotechnol. 2015;15:1350–6. Campos EV, De Oliviera JL, Da Silva CM, Pasquoto T. Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep. 2015;5:13809–23. Aggarwal N, Kumar R, Srivastava C, Durejaa P, Khurana JM. Synthesis, biological activities and SAR studies of novel 1-Ethyl-7-methyl-4-oxo-1,4-dihydro-ser[1,8] naphthyridine-3-carboxylic acid based diacyl and sulfonyl acyl hydrazines. Pest Manag Sci. 2014;70:1071–82. Pandey A, Aggarwal N, Adholeya A, Kochar M. Resurrection of Nalidixic Acid: evaluation of Water-Based Nanoformulations as Potential Nanomedicine. Nanoscale Res Lett. 2018;13:298–314. Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12:2826–41. Tunaz H. Insect growth regulators for insect pest control. Turk J Agric. 2004;28:377–87. Shakil NA, Pandey A, Singh MK, Kumar J, Awasthi SK, Pankaj SN, Srivastava C, Singh MK, Pandey RP. Synthesis and bioefficacy evaluation of new 3 substituted-3,4-dihydro-1,3-benzoxazines. J Environ Sci Health Part B. 2010;45:108–15. Balouiri M, Sadiki M, Ibnsouda KS. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–9. Finney DJ. Probit Analysis. New York: Cambridge University Press; 1971. p. 333. Behbahani GR, Sadr MH, Nabipour H, Oftadeh M, Rafiei S, Barzegar L. Preparation of nanonalidixic acid and study of its biological properties. Open Access Sci Rep. 2013;2:613–7. Donsì F, Annunziata M, Vincensi M, Ferrari G. Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol. 2012;159:342–50. Annunziata DM, Sessa M, Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol. 2011;44:1908–14.