The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions

Saudi Journal of Biological Sciences - Tập 27 - Trang 3132-3137 - 2020
Nadiyah M. Alabdallah1, Hassan S. Alzahrani2
1Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 383, Dammam, Saudi Arabia
2Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Tài liệu tham khảo

Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Hernandez, JAJA, 2017. Plant responses to salt stress: adaptive mechanisms. 7(1), 18. Ahmad, P., Jhon, RJAoA, 2005. Science S: Effect of salt stress on growth and biochemical parameters of Pisum sativum L. (Einfluss von Salzstress auf Wachstum und biochemische Parameter von Pisum sativum L.). 51(6), 665–672. Ashraf, M., Foolad, MRJE, 2007. botany e: Roles of glycine betaine and proline in improving plant abiotic stress resistance. 59(2), 206–216. Ayub, 2020, Salinity and its tolerance strategies in plants, 47 Bates, L.S., Waldren, R.P., Teare, IJP, 1973. Soil: Rapid determination of free proline for water-stress studies. 39(1), 205–207. Benchasri, SJRip, 2012. Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. 49(1), 105–112. Boateng, E.F., Nasiru, M.M., Agyemang, MJAFSJ, 2020. Meat: valuable animal-derived nutritional food. A review. 9–19. Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru AJAot, 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. 87(7), 1181–1200. Cha-um, S., Kirdmanee, C., Supaibulwatana, KJSA, 2004. Biochemical and physiological responses of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) to salt stress. 30, 247–253. Chen, J., Wang, XJHEP, 2006. Beijing: Plant physiology experimental guide. 24(25), 55–56. Chen, Y., Cao, X., Lu, Y., Wang, XJBoec, 2000. Toxicology: Effects of rare earth metal ions and their EDTA complexes on antioxidant enzymes of fish liver. 65(3), 357–365. Di Martino, C., Delfine, S., Pizzuto, R., Loreto, F., Fuggi, AJNp, 2003. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. 158(3), 455–463. Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S.D., Mishra, J., Arora, N.K.J.F.i.M., 2019. Salt-tolerant plant growth promoting Rhizobacteria for enhancing crop productivity of saline soils. 10. El-Beltagi, H.S., Ahmed, S.H., Namich, A.A.M., Abdel-Sattar, RRJFEB, 2017. Effect of salicylic acid and potassium citrate on cotton plant under salt stress. 26, 1091–1100. Esper Neto, M., Britt, D.W., Lara, L.M., Cartwright, A., dos Santos, R.F., Inoue, T.T., Batista, MAJA, 2020. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. 10(2), 307. Farooq, M., Hussain, M., Wakeel, A., Siddique, K.H.J.A.f.S.D., 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. 35(2), 461-481. Fiaz, S., Noor, M.A., Aldosri, FOJJotSSoAS, 2018. Achieving food security in the Kingdom of Saudi Arabia through innovation: Potential role of agricultural extension. 17(4), 365–375. Govorov, A.O., Carmeli, IJNl, 2007. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. 7(3), 620–625. Hänsch, 2009, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opinion Plant Biol., 12, 259, 10.1016/j.pbi.2009.05.006 Hirt, H., De Zelicourt, A., Saad, M., 2020. Compositions and methods for increasing salt tolerance in plants. In: US Patent App. 16/733,068. Hossain, M.A., Mostofa, M.G., Fujita, MJMPB, 2013. Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. 4. Hurry, V.M., Strand, A., Tobiaeson, M., Gardestrom, P., Oquist, GJPP, 1995. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. 109(2), 697–706. Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., Zhang, J., 2019. Salinity stress in arid and semi-arid climates: Effects and management in field crops. In: Climate Change and Agriculture. IntechOpen https://www.intechopen.com/books/climate-change-and-agriculture/salinity-stress-in-arid-and-semi-arid-climates-effects-and-management-in-field-crops. Iqbal, 2020, Nanoparticles and plant interaction with respect to stress response, 1 Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M.H., Adil, M., Heidari, P., Chen, J.-T.J.I.J.o.M.S., 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. 21(1), 148. Khan, I.A., Movva, S., Shaik, N.A., Chava, S., Jahan, P., Mukkavali, K.K., Kamineni, V., Hasan, Q., Rao, PJMG, 2014. Investigation of Calpain 10 (rs2975760) gene polymorphism in Asian Indians with gestational diabetes mellitus. 2, 299–306. Khan, I.A., Jahan, P., Hasan, Q., Rao, PJJoHS, 2015. Relationship between PTEN and gestational diabetes in Asian Indians womens. 3(3), 184. Khan, I.A., Jahan, P., Hasan, Q., Rao, PJD, 2019. Research MSC, Reviews: Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. 13(1), 688–694. Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., Seo, JJFRI, 2020. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. 1–29. Lee, 2020, Bionanotechnology in agriculture, food, cosmetic and cosmeceutical, 199 Li, J., Hu, J., Xiao, L., Gan, Q., Wang, YJW, 2017. Air, Pollution S: Physiological effects and fluorescence labeling of magnetic iron oxide nanoparticles on citrus (citrus reticulata) seedlings. 228(1),52. Lichtenthaler, H., 1987. Chlorophylls and caroteniods pigments of photosynthetic biomembranes in Methods in Enzymology vol. 148, 183-350. In.: Academic Press Orlando FI, USA. Mao, G., Xu, X., Xu, ZJCJoE-A, 2004. Advances in physiological and biochemical research of salt tolerance in plant. 12(1), 43–46. Maroufpour, 2020, Biogenic nanoparticles as novel sustainable approach for plant protection, 161 Masilamani, P., Arulmozhiselvan, K., Alagesan, A.J.J.o.A., 2020. Science N: Prospects of biodrainage to mitigate problems of waterlogging and soil salinity in context of India-A review. pp. 229–243. Mittal, S., Kumari, N., Sharma, VJPP, 2012. Biochemistry: Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. 54, 17–26. Mittler, RJTips, 2002. Oxidative stress, antioxidants and stress tolerance. 7(9), 405–410. Mohsenzadeh, S., Moosavian, SSJAJoPS, 2017. Zinc sulphate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officinalis. 8(11), 2635–2649. Mukherjee, S., Choudhuri, MJPp, 1983. Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. 58(2), 166–170. Munns, R., 2008. Tester MJARPB: Mechanisms of salinity tolerance. 59, 651–681. Murakeözy, É.P., Nagy, Z., Duhazé, C., Bouchereau, A., Tuba, ZJJopp, 2003. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. 160(4), 395–401. Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, SMJES, 2015. Research P: Effect of salinity stress on plants and its tolerance strategies: a review. 22(6), 4056–4075. Pavithra, G., Reddy, B.R., Salimath, M., Geetha, K., Shankar, AJIjopp, 2017. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. 22(3), 287–294. Rizwan, M., Ali, S., ur Rehman, M.Z., Adrees, M., Arshad, M., Qayyum, M.F., Ali, L., Hussain, A., Chatha, S.A.S., Imran, MJEP, 2019. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. 248, 358–367. Rossi, L., Fedenia, L.N., Sharifan, H., Ma, X., Lombardini, LJPp, 2019. Biochemistry: Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. 135, 160–166. Sakir, M., Salem, S., Sanduvac, S.T., Sahmetlioglu, E., Sarp, G., Onses, M.S., Yilmaz, E.J.C., 2020. Physicochemical SA, Aspects E: Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. 585, 124088. Salama, 2019, Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris), Biocatal. Agric. Biotechnol., 18, 101083, 10.1016/j.bcab.2019.101083 Shiri, T., Gaurav, S.S., Singh, S., Kumar, A., Sharma, S., Teja, S. Health benefits of nutritive value and qualitative symptoms in Okra (Abelmoschus Esculentus): A. Silveira, J.A., Carvalho, FEJJop, 2016. Proteomics, photosynthesis and salt resistance in crops: An integrative view. 143, 24–35. Singh, A., Singh, N., Hussain, I., Singh, H., Singh, SJIJPSI, 2015. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. 4(8), 25–40. Tang, X., Mu, X., Shao, H., Wang, H., Brestic, MJCrib, 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. 35(4), 425–437. Venkatachalam, 2017, Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.), Plant Physiol. Biochem., 110, 118, 10.1016/j.plaphy.2016.09.004 Ye, Y., Medina-Velo, I.A., Cota-Ruiz, K., Moreno-Olivas, F., Gardea-Torresdey, JLJE, 2019. safety e: Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? 184, 109671. Yemm, E., Willis, AJBj, 1954. The estimation of carbohydrates in plant extracts by anthrone. 57(3), 508. Zhao, C., Zhang, H., Song, C., Zhu, J.-K., Shabala, S.J.T.I., 2020. Mechanisms of plant responses and adaptation to soil salinity. 1(1):100017.