Evaluation of the ecotoxicity of model nanoparticles

Chemosphere - Tập 75 - Trang 850-857 - 2009
Raquel Barrena1, Eudald Casals2, Joan Colón1, Xavier Font1, Antoni Sánchez1, Víctor Puntes2,3
1Composting Research Group, Department of Chemical Engineering, Escola Tecnica Superior d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
2Institut Català de Nanotecnologia, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
3Insitut Català de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain

Tài liệu tham khảo

Ahring, 2003, vol. 81 Bastus, 2008, Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media, Nanotoxicology, 2, 99, 10.1080/17435390802217830 Braydich-Stolle, 2005, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol. Sci., 88, 412, 10.1093/toxsci/kfi256 Cedervall, 2007, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci., 104, 2050, 10.1073/pnas.0608582104 Daughton, 1999, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Persp., 107, 907, 10.1289/ehp.99107s6907 DIN 38412, Part 34, 1991. Determination of the inhibitory effect of wastewater on the light emission of Photobacterium phosphoreum (test using preserved luminescent bacteria). DIN 38414, 1987. Bestimmung des faulverhaltens (S8). In: Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker und Normausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V. (Eds.), Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Physikalische, chemische, biologische und bakteriologische Verfahren, VCH Verlagsgesellschaft mbH, Weinheim, Germany. Dunford, 1997, Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients, FEBS Lett., 418, 87, 10.1016/S0014-5793(97)01356-2 Ferrer, 2004, Sistema efectivo y económico para la determinación de la producción de biogás en ensayos en discontinuo, Tecnol. del Agua, 253, 50 Generalitat de Catalunya, 2007. Diario Oficial de la Generalidad de Cataluña, DOGC núm. 4993 – 23/10/2007 (in Spanish). Available on-line at http://www.gencat.net/diari_c/4993/07284081.htm (accessed 3.04.08). Hidaka, 1997, In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation, J. Photochem. Photobiol., 111, 205, 10.1016/S1010-6030(97)00229-3 Hussain, 2005, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. in Vitro, 19, 975, 10.1016/j.tiv.2005.06.034 Hyung, 2007, Natural organic matter stabilizes carbon nanotubes in the aqueous phase, Environ. Sci. Technol., 41, 179, 10.1021/es061817g Jain, 2007, Au nanoparticles target cancer, Nano Today, 2, 18, 10.1016/S1748-0132(07)70016-6 Kogan, 2006, Nanoparticle-mediated local and remote manipulation of protein aggregation, Nano Lett., 6, 110, 10.1021/nl0516862 Lecoanet, 2004, Laboratory assessment of the mobility of nanomaterials in porous media, Environ. Sci. Technol., 38, 5164, 10.1021/es0352303 Li, 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31, 111, 10.1080/10408430601057611 Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016 Mach, R., 2004. Nanoscale treatment of groundwater. Federal remedial technology roundtable: naval facilities engineering command. Available online at http://www.frtr.gov/pdf/meetings/l--mach_09jun04.pdf (accessed 3.04.08). Maynard, A., 2006. Nanotechnology and Safety. Available online at http://www.cleanroom-technology.co.uk/story.asp?storyCode=44919 (accessed 3.04.08). Moore, 2006, So nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int., 32, 967, 10.1016/j.envint.2006.06.014 Ngomsik, 2005, Magnetic nano- and microparticles for metal removal and environmental applications: a review, C.R. Chim., 8, 963, 10.1016/j.crci.2005.01.001 Nyberg, 2008, Assessing the impact of nanomaterials on anaerobic microbial communities, Environ. Sci. Technol., 42, 1938, 10.1021/es072018g Oberdorster, 2004, Toxicity of nC60 fullerenes to two aquatic species: Daphnia and largemouth bass, Abstr. Pap. Am. Chem. Soc., 227, U1233 Oberdorster, 2004, Manufactured nanomaterials (fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Persp., 112, 1058, 10.1289/ehp.7021 Pfaller, 2009, In vitro investigation of immunomodulatory effects caused by engineered inorganic nanoparticles – the impact of experimental design and cell choice, Nanotoxicology, 10.1080/17435390802546071 Quinten, 1986, Optical properties of aggregates of small metal particles, Surf. Sci., 172, 557, 10.1016/0039-6028(86)90501-7 Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 225103, 10.1088/0957-4484/18/22/225103 Smith, 2007, Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects, Aquat. Toxicol., 82, 94, 10.1016/j.aquatox.2007.02.003 Storhoff, 2000, What controls the optical properties of DNA-linked gold nanoparticle assemblies?, J. Am. Chem. Soc., 122, 4640, 10.1021/ja993825l Thode, 1997, Determination of plasma protein adsorption on magnetic iron oxides: sample preparation, Pharm. Res., 14, 905, 10.1023/A:1012104017761 Tiquia, 1998, Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge, Bioresource Technol., 65, 43, 10.1016/S0960-8524(98)00024-8 Tiquia, 1996, Effects of composting on phytotoxicity of spent pig-manure sawdust litter, Environ. Pollut., 93, 249, 10.1016/S0269-7491(96)00052-8 US Department of Agriculture and US Composting Council, 2001. Test methods for the examination of composting and compost, Edaphos International, Houston. Uheida, 2006, Sorption of palladium (II), rhodium (III), and platinum (IV) on Fe3O4 nanoparticles, J. Colloid Interf. Sci., 301, 402, 10.1016/j.jcis.2006.05.015 Warheit, 2007, Development of a base set of tests using ultrafine TiO2 particles as a component of nanoparticles risk management, Toxicol. Lett., 171, 99, 10.1016/j.toxlet.2007.04.008 Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003 Yavuz, 2006, Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science, 314, 964, 10.1126/science.1131475