Ecotoxicogenomic analysis of stress induced on Caenorhabditis elegans in heavy metal contaminated soil after nZVI treatment

Chemosphere - Tập 254 - Trang 126909 - 2020
Carmen Fajardo1, Margarita Martín2, Mar Nande2, Pedro Botías3, Jesús García-Cantalejo3, Gerardo Mengs2, Gonzalo Costa2
1Facultad de Farmacia, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
2Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
3Unidad de Genómica, Universidad Complutense de Madrid, 28040, Madrid, Spain

Tài liệu tham khảo

Araújo, 2015, The use of nanoparticles in soil and water remediation processes, Mater. Today-Proc., 2, 315, 10.1016/j.matpr.2015.04.055 Boyd, 2003, Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions, Environ. Toxicol. Chem., 22, 1100, 10.1002/etc.5620220518 Brenner, 1974, The genetics of Caenorhabditis elegans, Genetics, 77, 71, 10.1093/genetics/77.1.71 Chapman, 2013, A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils, Environ. Pollut., 179, 326, 10.1016/j.envpol.2013.04.027 Chen, 2015, Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron, J. Air Waste Manag. Assoc., 65, 375, 10.1080/10962247.2014.996266 Crane, 2012, Nanoscale zero-valent iron: future prospects for an emerging water treatment technology, J. Hazard Mater., 211–212, 112, 10.1016/j.jhazmat.2011.11.073 Dorjee, 2014, Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS) study, Microchem. J., 116, 15, 10.1016/j.microc.2014.03.010 Fayiga, 2016, Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices, Environ. Pollut., 216, 135, 10.1016/j.envpol.2016.05.062 Fajardo, 2019, Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): soil and freshwater bioassays to assess ecotoxicological impact, Sci. Total Environ., 656, 421, 10.1016/j.scitotenv.2018.11.323 Fajardo, 2015, Residual impact of aged nZVI on heavy metal-polluted soils, Sci. Total Environ., 535, 79, 10.1016/j.scitotenv.2015.03.067 Fajardo, 2019, Pb, Cd, and Zn soil contamination: monitoring functional and structural impact on microbiome, Appl. Soil Ecol., 135, 56, 10.1016/j.apsoil.2018.10.022 Fajardo, 2016, Three functional biomarkers for monitoring the nanoscale zero-valent iron (nZVI)-Induced molecular signature on soil organisms, Water Air Soil Pollut., 227, 201, 10.1007/s11270-016-2901-4 Fajardo, 2020, Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil, Sci. Total Environ., 706, 136041, 10.1016/j.scitotenv.2019.136041 Fu, 2014, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard Mater., 267, 194, 10.1016/j.jhazmat.2013.12.062 Gil-Díaz, 2014, Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties, Clean, 42, 1776 Gil-Díaz, 2016, A nanoremediation strategy for the recovery of an As-polluted soil, Chemosphere, 149, 137, 10.1016/j.chemosphere.2016.01.106 González-Moragas, 2015, C. elegans as a tool for in vivo nanoparticle assessment, Adv. Colloid Interface Sci., 219, 10, 10.1016/j.cis.2015.02.001 Harrington, 2012, Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals, Toxicol. Sci., 129, 49, 10.1093/toxsci/kfs191 Höss, 2009, Assessing the toxicity of contaminated soils using the nematode Caenohabditis elegans as test organism, Ecotoxicol. Environ. Saf., 72, 1811, 10.1016/j.ecoenv.2009.07.003 Hu, 2018, Toxic effects of size-tunable gold nanoparticles on Caenorhabditis elegans development and gene regulation, Sci. Rep., 8, 15245, 10.1038/s41598-018-33585-7 Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211 Huang, 2009, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1, 10.1093/nar/gkn923 2010 Jiang, 2018, Remediation of contaminated soils by enhanced nanoscale zero valent iron, Environ. Res., 163, 217, 10.1016/j.envres.2018.01.030 Khalid, 2017, A comparison of technologies for remediation of heavy metal contaminated soils, J. Geochem. Explor., 182, 247, 10.1016/j.gexplo.2016.11.021 Kumar, 2015, Comparative analysis of stress induced gene expression in Caenorhabditis elegans following exposure to environmental and lab reconstituted complex metal mixture, PloS One, 10, 10.1371/journal.pone.0132896 Lefevre, 2016, A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities, Sci. Total Environ., 565, 889, 10.1016/j.scitotenv.2016.02.003 Leung, 2008, Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology, Toxicol. Sci., 106, 5, 10.1093/toxsci/kfn121 Liu, 2018, Remediation techniques for heavy metal-contaminated soils: principles and applicability, Sci. Total Environ., 633, 206, 10.1016/j.scitotenv.2018.03.161 Løkke, 1998 McElwee, 2013, Comparative toxicogenomic responses of mercuric and methyl-mercury, BMC Genom., 14, 698, 10.1186/1471-2164-14-698 Menzel, 2001, A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible, Arch. Biochem. Biophys., 395, 158, 10.1006/abbi.2001.2568 Menzel, 2005, Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans, Environ. Sci. Technol., 39, 8324, 10.1021/es050884s Menzel, 2009, Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays, BMC Genom., 10, 160, 10.1186/1471-2164-10-160 Mu, 2017, Iron oxide shell mediated environmental remediation properties of nano zero-valent iron, Environ. Sci.: Nano, 4, 27 Oliveros, 2007 Peredney, 2000, Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil, Arch. Environ. Contam. Toxicol., 39, 113, 10.1007/s002440010086 Reichert, 2005, Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray, Chemosphere, 61, 229, 10.1016/j.chemosphere.2005.01.077 Roh, 2011, Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans, Chemosphere, 84, 1356, 10.1016/j.chemosphere.2011.05.010 Roh, 2006, Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment, Environ. Toxicol. Chem., 25, 2946, 10.1897/05-676R.1 Roh, 2009, Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics, Environ. Sci. Technol., 43, 3933, 10.1021/es803477u Saccà, 2014, Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms, Chemosphere, 104, 184, 10.1016/j.chemosphere.2013.11.013 Saccà, 2014, Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri, PloS One, 9, 10.1371/journal.pone.0089677 Sahu, 2013, Epigenetic mechanisms of plant stress responses and adaptation, Plant Cell Rep., 32, 1151, 10.1007/s00299-013-1462-x Shin, 2011, Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing, BMC Res. Notes, 4, 34, 10.1186/1756-0500-4-34 Spurgeon, 1996, Effects of variations in the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida, Pedobiologia, 40, 80 Stefaniuk, 2016, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287, 618, 10.1016/j.cej.2015.11.046 Su, 2016, Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles, J. Hazard Mater., 318, 533, 10.1016/j.jhazmat.2016.07.039 Tchounwou, 2012, Heavy metal toxicity and the environment, 133 Tejeda-Benitez, 2016, Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia, Environ. Pollut., 212, 238, 10.1016/j.envpol.2016.01.057 Tominaga, 2008, Sensing of heavy metals using Caenorhabditis elegans DNA microarray, vol. 1, 155 Tsyusko, 2012, Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles, Environ. Sci. Technol., 46, 4115, 10.1021/es2033108 Wang, 2010, Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity, J. Phys. Chem., 114, 2027, 10.1021/jp909137f Wang, 2014, Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI, J. Hazard Mater., 275, 230, 10.1016/j.jhazmat.2014.04.056 Wu, 2016, Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives, ChemCatChem, 9, 41, 10.1002/cctc.201600808 Xu, 2017, Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation, Environ. Sci. Pollut. Res. Int., 24, 666, 10.1007/s11356-016-7826-3 Yang, 2016, Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicy in Caenorhabditis elegans, Chemosphere, 150, 615, 10.1016/j.chemosphere.2016.01.068 Ye, 2017, Co-ocurrence and interactions of pollutants and their impacts on soil remediation-A review, Crit. Rev. Environ. Sci. Technol., 47, 1528, 10.1080/10643389.2017.1386951 Ye, 2017, Biological technologies for the remediation of co-contaminated soil, Crit. Rev. Biotechnol., 37, 1062, 10.1080/07388551.2017.1304357 Ye, 2019, The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil, Resour. Conserv. Recycl., 140, 278, 10.1016/j.resconrec.2018.10.004 Zhang, 2010, Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles, Chin. Sci. Bull., 55, 365, 10.1007/s11434-009-0703-4 Zhang, 2015, Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3complexes, J. Hazard Mater., 300, 633, 10.1016/j.jhazmat.2015.07.058 Zhao, 2016, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res., 100, 245, 10.1016/j.watres.2016.05.019 Zhu, 2016, Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles, Chem. Eng. J., 302, 663, 10.1016/j.cej.2016.05.072