Nanoparticulate material delivery to plants

Plant Science - Tập 179 - Trang 154-163 - 2010
Remya Nair1, Saino Hanna Varghese1, Baiju G. Nair1, T. Maekawa1, Y. Yoshida1, D. Sakthi Kumar1
1Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan

Tài liệu tham khảo

Scrinis, 2007, The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems, Int. J. Sociol. Food Agric., 15, 22 Feiner, 2006, Nanoelectronics: crossing boundaries and borders, Nat. Nanotechnol., 1, 91, 10.1038/nnano.2006.112 Hu, 2007, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett., 7, 3249, 10.1021/nl071018b Caruthers, 2007, Nanotechnological applications in medicine, Curr. Opin. Biotechnol., 18, 26, 10.1016/j.copbio.2007.01.006 Patolsky, 2006, Nanowire sensors for medicine and life sciences, Nanomedicine, 1, 51, 10.2217/17435889.1.1.51 Carmen, 2003, Nanotechnology: a new frontier in food science, Food Technol., 57, 24 Roco, 2003, Nanotechnology convergence with modern biology and medicine, Curr. Opin. Biotechnol., 14, 337, 10.1016/S0958-1669(03)00068-5 Lu, 2008, Light activated nanoimpeller-controlled drug release in cancer cells, Small, 4, 421, 10.1002/smll.200700903 Kumar, 2009, Plant-mediated synthesis of silver and gold nanoparticles and their applications, J. Chem. Technol. Biotechnol., 84, 151, 10.1002/jctb.2023 Sharma, 2009, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145, 83, 10.1016/j.cis.2008.09.002 Green, 2007, Recently patented and commercialized formulation and adjuvant technology, Crop Prot., 26, 320, 10.1016/j.cropro.2005.04.018 Wang, 2007, Oil-in-water nanoemulsions for pesticide formulations, J. Colloid Interface Sci., 314, 230, 10.1016/j.jcis.2007.04.079 Boehm, 2003, Nanoprecipitation technique for the encapsulation of agrochemical active ingredients, J. Microencapsul., 20, 433, 10.1080/0265204021000058410 Tsuji, 2001, Microencapsulation of pesticides and their improved handling safety, J. Microencapsul., 18, 137, 10.1080/026520401750063856 Perez-de-Luque, 2009, Nanotechnology for parasitic plant control, Pest Manag. Sci., 65, 540, 10.1002/ps.1732 Barik, 2008, Nanosilica—from medicine to pest control, Parasitol. Res., 103, 253, 10.1007/s00436-008-0975-7 Rahman, 2009, Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine, Naturwissenschaften, 96, 31, 10.1007/s00114-008-0445-1 Athanassiou, 2007, Insecticidal effect of three diatomaceous earth formulations, applied alone or in combination, against three stored-product beetle species on wheat and maize, J. Stored Prod. Res., 43, 330, 10.1016/j.jspr.2006.08.004 Mewis, 2001, Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granaries and Plodia interpunctella, J. Stored Prod. Res., 37, 153, 10.1016/S0022-474X(00)00016-3 Li, 2007, Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin, Pest Manag. Sci., 63, 241, 10.1002/ps.1301 Liu, 2006, Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer, Agric. Sci. China, 5, 700, 10.1016/S1671-2927(06)60113-2 Zhang, 2006, Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants, Nanoscience, 11, 18 Panacek, 2009, Antifungal activity of silver nanoparticles against Candida spp, Biometals, 30, 6333 Singh, 2008, Nanotechnology in medicine and antibacterial effect of silver nanoparticles, Digest J. Nanomater. Biostruct., 3, 115 Jo, 2009, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93, 1037, 10.1094/PDIS-93-10-1037 Park, 2006, A new composition of nanosized silica–silver for control of various plant diseases, Plant Pathol. J., 22, 295, 10.5423/PPJ.2006.22.3.295 Min, 2009, Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi, Plant Pathol. J., 25, 376, 10.5423/PPJ.2009.25.4.376 Kim, 2009, An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp., J. Microbiol. Biotechnol., 19, 760 Solgi, 2009, Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers, Postharvest. Biol. Technol., 53, 155, 10.1016/j.postharvbio.2009.04.003 Liu, 2009, Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers, Postharvest Biol. Technol., 54, 59, 10.1016/j.postharvbio.2009.05.004 Liu, 2001, Use of nanoparticles for controlled release of biocides in solid wood, J. Appl. Polym. Sci., 79, 458, 10.1002/1097-4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H Liu, 2002, Controlled release of biocides in solid wood. Part 1. Efficacy against Gloeophyllum trabeum, a brown rot wood decay fungus, J. Appl. Polym. Sci., 86, 596, 10.1002/app.10896 Liu, 2002, Controlled release of biocides in solid wood. Part 2. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi, J. Appl. Polym. Sci., 86, 608, 10.1002/app.10897 Liu, 2002, Controlled release of biocides in solid wood. Part 3. Preparation and characterization of surfactant-free nanoparticles, J. Appl. Polym. Sci., 86, 615, 10.1002/app.10898 Liu, 2003, Nanoparticles for the controlled release of fungicides in wood: soil Jar studies using Gloeophyllum trabeum and Trametes versicolor wood decay fungi, Holzforschung, 57, 135, 10.1515/HF.2003.021 Fleischer, 1999, The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II, Plant Physiol., 121, 829, 10.1104/pp.121.3.829 Navarro, 2008, Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology, 17, 372, 10.1007/s10646-008-0214-0 Moore, 2006, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment, Environ. Int., 32, 967, 10.1016/j.envint.2006.06.014 Jia, 2005, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol., 39, 1378, 10.1021/es048729l Uzu, 2010, Foliar lead uptake by lettuce exposed to atmospheric pollution, Environ. Sci. Technol., 44, 1036, 10.1021/es902190u Fernandez, 2009, Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization, Crit. Rev. Plant Sci., 28, 36, 10.1080/07352680902743069 Eichert, 2008, Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles, Physiol. Plant., 134, 151, 10.1111/j.1399-3054.2008.01135.x Da Silva, 2006, Responses of restinga plant species to pollution from an iron pelletization factory, Water Air Soil Pollut., 175, 241, 10.1007/s11270-006-9135-9 Mohanpuria, 2008, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanopart. Res., 10, 507, 10.1007/s11051-007-9275-x Gade, 2010, Mycogenic metal nanoparticles: progress and applications, Biotechnol. Lett., 32, 593, 10.1007/s10529-009-0197-9 Garnea-Torresdey, 2002, Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett., 2, 397, 10.1021/nl015673+ Sharma, 2007, Synthesis of plant mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials, Environ. Sci. Technol., 41, 5137, 10.1021/es062929a Gardea-Torresdey, 2003, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles, Langmuir, 19, 1357, 10.1021/la020835i Harris, 2008, On the formation and extent of uptake of silver nanoparticles by live plants, J. Nanopart. Res., 10, 691, 10.1007/s11051-007-9288-5 Haverkamp, 2009, The mechanism of metal nanoparticle formation in plants: limits on accumulation, J. Nanopart. Res., 11, 1453, 10.1007/s11051-008-9533-6 Manceau, 2008, Formation of metallic copper nanoparticles at the soil–root interface, Environ. Sci. Technol., 42, 1766, 10.1021/es072017o Haverkamp, 2007, Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo, J. Nanopart. Res., 9, 697, 10.1007/s11051-006-9198-y Gardea-Torresdey, 2005, Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent, Anal. Bioanal. Chem., 382, 347, 10.1007/s00216-004-2966-6 Huang, 2007, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, 18, 105104, 10.1088/0957-4484/18/10/105104 Egorova, 2000, Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin, Colloids Surf. A: Physiochem. Eng. Aspects, 168, 87, 10.1016/S0927-7757(99)00513-0 Song, 2010, Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extracts, Bioprocess Biosyst. Eng., 33, 159, 10.1007/s00449-009-0373-2 Bar, 2009, Green synthesis of silver nanoparticles using seed extract of Jatropha curcas, Colloids Surf.: Physiochem. Eng. Aspects, 348, 212, 10.1016/j.colsurfa.2009.07.021 Bar, 2009, Green synthesis of silver nanoparticles using latex of Jatropha curcus, Colloids Surf.: Physiochem. Eng. Aspects, 339, 134, 10.1016/j.colsurfa.2009.02.008 Song, 2009, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng., 32, 79, 10.1007/s00449-008-0224-6 Song, 2009, Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts, Process Biochem., 44, 1133, 10.1016/j.procbio.2009.06.005 Chen, 2008, Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells, Colloids Surf. B: Biointerf., 67, 26, 10.1016/j.colsurfb.2008.07.010 Narayanan, 2008, Coriander leaf mediated synthesis of gold nanoparticles, Mater. Lett., 62, 4588, 10.1016/j.matlet.2008.08.044 Song, 2008, Biological synthesis of bimetallic Au/Ag nanoparticles using Persimon (Diopyros kaki) leaf extract, Kor. J. Chem. Eng., 25, 808, 10.1007/s11814-008-0133-z Parsons, 2010, Kinetics and thermodynamics of the bioreduction of potassium tetrachloroaurate using inactivated oat and wheat tissues, J. Nanopart. Res., 12, 1579, 10.1007/s11051-009-9674-2 Herrera-Becerra, 2008, Electron microscopy characterization of biosynthesized iron oxide nanoparticles, Appl. Phys. A, 91, 241, 10.1007/s00339-008-4420-7 Herrera-Becerra, 2007, Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route, J. Phys. Chem. C, 111, 16147, 10.1021/jp072259a Armendariz, 2004, Size controlled gold nanoparticles formation by Avena sativa biomass:use in plant biotechnology, J. Nanopart. Res., 6, 377, 10.1007/s11051-004-0741-4 Panessa-Warren, 2006, Biological cellular response to carbon nanoparticle toxicity, J. Phys.: Condens. Matter., 18, S2185 Pacurari, 2008, Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-KB and Akt in normal and malignant human mesothelial cells, Environ. Health Perspect., 116, 1211, 10.1289/ehp.10924 Canas, 2008, Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 27, 1922, 10.1897/08-117.1 Khodakovskaya, 2009, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 3, 3221, 10.1021/nn900887m Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016 Stampoulis, 2009, Assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 43, 9473, 10.1021/es901695c Tan, 2007, Multi-walled carbon-nanotubes interact with cultured rice cells: evidence of a self-defense response, J. Biomed. Nanotechnol., 3, 285, 10.1166/jbn.2007.035 Tan, 2009, Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon, 47, 3479, 10.1016/j.carbon.2009.08.018 Lin, 2009, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells, J. Hazard. Mater., 170, 578, 10.1016/j.jhazmat.2009.05.025 Lin, 2009, Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Small, 5, 1128 Liu, 2009, Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 9, 1007, 10.1021/nl803083u Samaj, 2004, Endocytosis, actin cytoskeleton, and signaling, Plant Physiol., 135, 1150, 10.1104/pp.104.040683 Gonzalez-Melendi, 2008, Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues, Ann. Bot., 101, 187, 10.1093/aob/mcm283 Zhu, 2008, Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants, J. Environ. Monit., 10, 713, 10.1039/b805998e Corredor, 2009, Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification, BMC Plant Biol., 9, 45, 10.1186/1471-2229-9-45 Racuciu, 2009, Cytogenetic changes induced by beta-cyclodextrin coated nanoparticles in plant seeds, Romanian J. Phys., 54, 125 Racuciu, 2007, Cytogenetic changes induced by aqueous ferrofluids in agricultural plants, J. Magn. Magn. Mater., 311, 288, 10.1016/j.jmmm.2006.10.1184 Pavel, 2005, Chromosomal aberrations in plants under magnetic fluid influence, J. Magn. Magn. Mater., 289, 469, 10.1016/j.jmmm.2004.11.132 Pavel, 1999, Accumulation dynamics and some cytogenetical tests at C. majus and P. somniferum callus under the magnetic liquid effect, J. Magn. Magn. Mater., 201, 443, 10.1016/S0304-8853(99)00112-2 Racuciu, 2006, TMA-OH coated magnetic nanoparticles internalize in vegetal tissue, Romanian J. Phys., 52, 395 Racuciu, 2009, Biocompatible magnetic fluid nanoparticles internalized in vegetal tissues, Romanian J. Phys., 54, 115 Racuciu, 2009, The response of plant tissues to magnetic fluid and electromagnetic exposure, Romanian J. Biophys., 19, 73 Zheng, 2005, Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083 Hong, 2005, Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Elem. Res., 105, 269, 10.1385/BTER:105:1-3:269 Gao, 2006, Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco–rubisco activase, Biol. Trace Elem. Res., 111, 239, 10.1385/BTER:111:1:239 Lei, 2007, Effects of nanoanatase TiO2 on the photosynthesis of spinach chloroplasts under different light illumination, Biol. Trace Elem. Res., 119, 68, 10.1007/s12011-007-0047-3 Gao, 2008, Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase?, Biometals, 21, 211, 10.1007/s10534-007-9110-y Linglan, 2008, Rubisco activase m RNA expression in spinach: modulation by nano anatase treatment, Biol. Trace Elem. Res., 122, 168, 10.1007/s12011-007-8069-4 Xuming, 2008, Effects of nano-anatase on ribulose-1, 5-biphosphate carboxylase/oxygenase mRNA expression in spinach, Biol. Trace Elem. Res., 126, 280, 10.1007/s12011-008-8203-y Mingyu, 2008, Effects of nano-anatase on the photosynthetic improvement of chloroplast damaged by linolenic acid, Biol. Trace Elem. Res., 124, 173, 10.1007/s12011-008-8134-7 Yang, 2006, Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biol. Trace Elem. Res., 110, 179, 10.1385/BTER:110:2:179 Yang, 2007, The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction, Biol. Trace Elem. Res., 119, 77, 10.1007/s12011-007-0046-4 Mingyu, 2007, Effects of nano-anatase TiO2 on absorption, distribution of light and photoreduction activities of chloroplast membrane of spinach, Biol. Trace Elem. Res., 118, 120, 10.1007/s12011-007-0006-z Lei, 2007, Effects of nano-anatase on spectral characteristics and distribution of LHC II on the thylakoid membranes of spinach, Biol. Trace Elem. Res., 120, 273, 10.1007/s12011-007-8025-3 Hong, 2005, Effect of nano-TiO2 on spectral characterization of photosystem particles from spinach, Chem. Res. Chin. Univ., 21, 196 Mingyu, 2007, Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2, Biol. Trace Elem. Res., 119, 183, 10.1007/s12011-007-0065-1 Lei, 2008, Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation, Biol. Trace Elem. Res., 121, 69, 10.1007/s12011-007-8028-0 Kongkanand, 2008, Quantum dot solar cells. Tuning photiresponse through size and shape of CdSe–TiO2 architecture, J. Am. Chem. Soc., 130, 4007, 10.1021/ja0782706 Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003 Doshi, 2008, Nano-aluminium: transport through sand columns and environmental effects on plants and soil communities, Environ. Res., 106, 296, 10.1016/j.envres.2007.04.006 Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012 Lin, 2008, Root uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 42, 5580, 10.1021/es800422x Lee, 2008, Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (Mung bean) and Triticum aestivum (Wheat); plant agar test for water-insoluble nanoparticles, Environ. Toxicol. Chem., 27, 1915, 10.1897/07-481.1 Shah, 2009, Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds, Water Air Soil Pollut., 197, 143, 10.1007/s11270-008-9797-6 Kumari, 2009, Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 407, 5243, 10.1016/j.scitotenv.2009.06.024 Xia, 2009, Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs, ACS Nano, 3, 3273, 10.1021/nn900918w Radu, 2004, A polyamidoamine dendrimer capped mesoporous silica nanospheres-based gene transfection reagent, J. Am. Chem. Soc., 126, 13216, 10.1021/ja046275m Roy, 2005, Optical tracking of organically modified silica nanoparticles as DNA carriers: a non viral nanomedicine approach for gene delivery, Proc. Natl. Acad. Sci. U.S.A., 102, 279, 10.1073/pnas.0408039101 Torney, 2007, Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nat. Nanotechnol., 2, 295, 10.1038/nnano.2007.108 McKnight, 2003, Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation, Nanotechnology, 14, 551, 10.1088/0957-4484/14/5/313 McKnight, 2004, Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays, Nano Lett., 4, 1213, 10.1021/nl049504b Segura, 2001, Materials for non viral gene delivery, Annu. Rev. Mater. Res., 31, 25, 10.1146/annurev.matsci.31.1.25 Neuhaus, 1990, Plant transformation by microinjection techniques, Physiol. Plant., 79, 213, 10.1111/j.1399-3054.1990.tb05890.x Bolik, 1991, Identification of embryogenic microspores of barley (Hordeum vulgare) by individual selection and culture and their potential for transformation by microinjection, Protoplasma, 162, 61, 10.1007/BF01403902 Jun, 2008, Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle, J. Cent. South Univ. Technol., 15, 768, 10.1007/s11771-008-0142-4 Klein, 1989, Genetic transformation of maize cells by particle bombardment, Plant Physiol., 91, 440, 10.1104/pp.91.1.440 Deng, 2001, Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system, Cell Res., 11, 156, 10.1038/sj.cr.7290081