Advanced Strategies for Production of Natural Products in Yeast
Tài liệu tham khảo
Achmon, 2014, Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system, Appl. Microbiol. Biotechnol., 98, 3603, 10.1007/s00253-013-5269-z
Agapakis, 2012, Natural strategies for the spatial optimization of metabolism in synthetic biology, Nat. Chem. Biol., 8, 527, 10.1038/nchembio.975
Ahn, 2013, GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation, FEMS Yeast Res., 13, 140, 10.1111/j.1567-1364.2012.12009.x
Alford, 2017, The rosetta all-atom energy function for macromolecular modeling and design, J. Chem. Theor. Comput., 13, 3031, 10.1021/acs.jctc.7b00125
Atanasov, 2015, Discovery and resupply of pharmacologically active plant-derived natural products: a review, Biotechnol. Adv., 33, 1582, 10.1016/j.biotechadv.2015.08.001
Avalos, 2013, Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols, Nat. Biotechnol., 31, 335, 10.1038/nbt.2509
Bakker, 2001, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 25, 15, 10.1111/j.1574-6976.2001.tb00570.x
Baumann, 2018, A yeast-based biosensor for screening of short- and medium-chain fatty acid production, ACS Synth. Biol., 7, 2640, 10.1021/acssynbio.8b00309
Blount, 2018, Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome, Nat. Commun., 9, 1932, 10.1038/s41467-018-03143-w
Bracher, 2017, Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations, Appl. Environ. Microbiol., 83, 10.1128/AEM.00892-17
Brown, 2015, De novo production of the plant-derived alkaloid strictosidine in yeast, Proc. Natl. Acad. Sci. U S A, 112, 3205, 10.1073/pnas.1423555112
Buijs, 2015, Long-chain alkane production by the yeast Saccharomyces cerevisiae, Biotechnol. Bioeng., 112, 1275, 10.1002/bit.25522
Carbonell, 2018, An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals, Commun. Biol., 1, 66, 10.1038/s42003-018-0076-9
Cardenas, 2016, Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis, Metab. Eng., 36, 80, 10.1016/j.ymben.2016.02.009
Cardenas, 2014, Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone, Metab. Eng., 25, 194, 10.1016/j.ymben.2014.07.008
Cervin, M.A., Soucaille, P., and Valle, F. (2010). Process for the biological production of 1,3-propanediol with high yield. US. 7745184B2.
Chatzivasileiou, 2019, Two-step pathway for isoprenoid synthesis, Proc. Natl. Acad. Sci. U S A, 116, 506, 10.1073/pnas.1812935116
Chen, 2014, Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae, Metab. Eng., 22, 104, 10.1016/j.ymben.2014.01.005
Chen, 2015, Mitochondrial engineering of the TCA cycle for fumarate production, Metab. Eng., 31, 62, 10.1016/j.ymben.2015.02.002
Chen, 2017, Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production, RSC Adv., 7, 22409, 10.1039/C7RA02538F
Chen, 2017, Metabolic engineering of Escherichia coli for microbial synthesis of monolignols, Metab. Eng., 39, 102, 10.1016/j.ymben.2016.10.021
Chen, 2019, Identification of Absidia orchidis steroid 11beta-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone, Metab. Eng., 57, 31, 10.1016/j.ymben.2019.10.006
Cheng, 2019, Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae, ACS Synth. Biol., 8, 968, 10.1021/acssynbio.9b00135
Clomburg, 2019, The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis, Proc. Natl. Acad. Sci. U S A, 116, 12810, 10.1073/pnas.1821004116
Cronan, 2005, Function, attachment and synthesis of lipoic acid in Escherichia coli, Adv. Microb. Physiol., 50, 103, 10.1016/S0065-2911(05)50003-1
Curran, 2013, Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications, Metab. Eng., 19, 88, 10.1016/j.ymben.2013.07.001
Czajka, 2018, Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone, Microb. Cell. Fact., 17, 136, 10.1186/s12934-018-0984-x
Davey, 2017, Rational design of proteins that exchange on functional timescales, Nat. Chem. Biol., 13, 1280, 10.1038/nchembio.2503
De, 2014, Rapid and reliable DNA assembly via ligase cycling reaction, ACS Synth. Biol., 3, 97, 10.1021/sb4001992
Deloache, 2015, An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose, Nat. Chem. Biol., 11, 465, 10.1038/nchembio.1816
DeLoache, 2016, Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways, Nat. Commun., 7, 11152, 10.1038/ncomms11152
Du, 2016, Engineering Yarrowia lipolytica for campesterol overproduction, PLoS One, 11, e0146773, 10.1371/journal.pone.0146773
Eichenberger, 2017, Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties, Metab. Eng., 39, 80, 10.1016/j.ymben.2016.10.019
Eichenberger, 2018, De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae, FEMS Yeast Res., 18, foy046, 10.1093/femsyr/foy046
Ekr, 2018, A transcription factor-based biosensor for detection of itaconic acid, ACS. Synth. Biol., 7, 1436, 10.1021/acssynbio.8b00057
Eng, 2018, ClusterCAD: a computational platform for type I modular polyketide synthase design, Nucleic Acids Res., 46, D509, 10.1093/nar/gkx893
Fischer, 2011, Metabolic engineering of monoterpene synthesis in yeast, Biotechnol. Bioeng., 108, 1883, 10.1002/bit.23129
Fitzpatrick, 1999, Tetrahydropterin-dependent amino acid hydroxylases, Annu. Rev. Biochem., 68, 355, 10.1146/annurev.biochem.68.1.355
Galanie, 2015, Complete biosynthesis of opioids in yeast, Science, 349, 1095, 10.1126/science.aac9373
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Gong, 2017, Engineering robustness of microbial cell factories, Biotechnol. J., 12, 1700014, 10.1002/biot.201700014
Grewal, 2018, Bioproduction of a betalain color palette in Saccharomyces cerevisiae, Metab. Eng., 45, 180, 10.1016/j.ymben.2017.12.008
Guo, 2013, CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts, Proc. Natl. Acad. Sci. U S A, 110, 12108, 10.1073/pnas.1218061110
Guo, 2016, Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones, New Phytol., 210, 525, 10.1111/nph.13790
Hammer, 2017, Harnessing yeast organelles for metabolic engineering, Nat. Chem. Biol., 13, 823, 10.1038/nchembio.2429
Hatlestad, 2012, The beet R locus encodes a new cytochrome P450 required for red betalain production, Nat. Genet., 44, 816, 10.1038/ng.2297
Havir, 1968, L-phenylalanine ammonia-lyase. II. Mechanism and kinetic properties of the enzyme from potato tubers, Biochemistry, 7, 1904, 10.1021/bi00845a039
Hawkins, 2008, Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae, Nat. Chem. Biol., 4, 564, 10.1038/nchembio.105
Heo, 2017, De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis, Microb. Cell. Fact., 16, 30, 10.1186/s12934-017-0644-6
Ignea, 2014, Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase, ACS Synth. Biol., 3, 298, 10.1021/sb400115e
Ignea, 2018, Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering, Nat. Chem. Biol., 14, 9, 10.1038/s41589-018-0166-5
Ignea, 2019, Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate, Nat. Commun., 10, 3799, 10.1038/s41467-019-11290-x
Jendresen, 2015, Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae, Appl. Environ. Microbiol., 81, 4458, 10.1128/AEM.00405-15
Jia, 2018, Precise control of SCRaMbLE in synthetic haploid and diploid yeast, Nat. Commun., 9, 1933, 10.1038/s41467-018-03084-4
Jiang, 2017, Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae, Metab. Eng., 41, 57, 10.1016/j.ymben.2017.03.005
Jiang, 2018, Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose, J. Agric. Food Chem., 66, 4431, 10.1021/acs.jafc.8b01272
Jun, 2018, Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase, Plant Physiol., 176, 1452, 10.1104/pp.17.01608
Kim, 2018, Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase, Nat. Commun., 9, 4867, 10.1038/s41467-018-07285-9
Kim, 2019, Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway, Metab. Eng., 56, 50, 10.1016/j.ymben.2019.08.013
Kirby, 2008, Metabolic engineering of microorganisms for isoprenoid production, Nat. Prod. Rep., 25, 656, 10.1039/b802939c
Kirby, 2009, Biosynthesis of plant isoprenoids: perspectives for microbial engineering, Annu. Rev. Plant Biol., 60, 335, 10.1146/annurev.arplant.043008.091955
Kozak, 2014, Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae, MBio, 5, 10.1128/mBio.01696-14
Larue, 2016, Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae, Biotechnol. Biofuels, 9, 1, 10.1186/s13068-016-0470-9
Lau, 2015, Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone, Science, 349, 1224, 10.1126/science.aac7202
Lau, 2018, Prokaryotic nanocompartments form synthetic organelles in a eukaryote, Nat. Commun., 9, 1311, 10.1038/s41467-018-03768-x
Levisson, 2019, Toward developing a yeast cell factory for the production of prenylated flavonoids, J. Agric. Food Chem., 67, 13478, 10.1021/acs.jafc.9b01367
Li, 2010, Biofuels: biomolecular engineering fundamentals and advances, Annu. Rev. Chem. Biomol. Eng., 1, 19, 10.1146/annurev-chembioeng-073009-100938
Li, 2014, Compartmentalizing metabolic pathway in Candida glabrata for acetoin production, Metab. Eng., 28, 1, 10.1016/j.ymben.2014.11.008
Li, 2015, De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae, Metab. Eng., 32, 1, 10.1016/j.ymben.2015.08.007
Li, 2015, Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening, ACS Synth. Biol., 4, 1308, 10.1021/acssynbio.5b00069
Li, 2018, Complete biosynthesis of noscapine and halogenated alkaloids in yeast, Proc. Natl. Acad. Sci. U S A, 115, E3922, 10.1073/pnas.1721469115
Li, 2019, Production of triterpene ginsenoside compound K in the non-conventional Yeast Yarrowia lipolytica, J. Agric. Food Chem., 67, 2581, 10.1021/acs.jafc.9b00009
Li, 2019, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng., 54, 1, 10.1016/j.ymben.2019.03.002
Lian, 2014, Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains, Metab. Eng., 24, 139, 10.1016/j.ymben.2014.05.010
Lian, 2018, Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications, Metab. Eng., 50, 85, 10.1016/j.ymben.2018.04.011
Lian, 2016, Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering, ACS Synth. Biol., 5, 689, 10.1021/acssynbio.6b00019
Liu, 2018, Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods, Nat. Commun., 9, 1936, 10.1038/s41467-018-04254-0
Liu, 2018, Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches, Nat. Commun., 9, 448, 10.1038/s41467-018-02883-z
Liu, 2018, Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol, Metab. Eng., 45, 189, 10.1016/j.ymben.2017.12.009
Liu, 2019, Rewiring carbon metabolism in yeast for high level production of aromatic chemicals, Nat. Commun., 10, 4976, 10.1038/s41467-019-12961-5
Luo, 2019, Complete biosynthesis of cannabinoids and their unnatural analogues in yeast, Nature, 567, 123, 10.1038/s41586-019-0978-9
Liu, 2020, The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction, Metab. Eng., 57, 151, 10.1016/j.ymben.2019.11.001
Lv, 2016, Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae, Nat. Commun., 7, 12851, 10.1038/ncomms12851
Lv, 2019, Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis, ACS Synth. Biol., 8, 2514, 10.1021/acssynbio.9b00193
Lyu, 2019, Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol, J. Agric. Food Chem., 67, 5596, 10.1021/acs.jafc.9b01329
Ma, 2019, Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae, J. Agric. Food Chem., 67, 8590, 10.1021/acs.jafc.9b03456
Mayer, 1999, A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha, Biotechnol. Bioeng., 63, 373, 10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T
Meadows, 2016, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature, 537, 694, 10.1038/nature19769
Medema, 2015, Computational approaches to natural product discovery, Nat. Chem. Biol., 11, 639, 10.1038/nchembio.1884
Mee, 2014, Syntrophic exchange in synthetic microbial communities, Proc. Natl. Acad. Sci. U S A, 111, E2149, 10.1073/pnas.1405641111
Meijer, 2010, Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum, Appl. Environ. Microbiol., 76, 5702, 10.1128/AEM.02327-09
Michener, 2012, Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases, Proc. Natl. Acad. Sci. U S A, 109, 19504, 10.1073/pnas.1212287109
Mikkelsen, 2012, Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform, Metab. Eng., 14, 104, 10.1016/j.ymben.2012.01.006
Minami, 2008, Microbial production of plant benzylisoquinoline alkaloids, Proc. Natl. Acad. Sci. U S A, 105, 7393, 10.1073/pnas.0802981105
Morris, 2018, An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production, J. Biol. Chem., 293, 13364, 10.1074/jbc.RA118.004067
Moser, 2018, Whole-cell (+)-ambrein production in the yeast Pichia pastoris, Metab. Eng. Commun., 7, e00077, 10.1016/j.mec.2018.e00077
Nakagawa, 2016, Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli, Nat. Commun., 7, 10390, 10.1038/ncomms10390
Nakagawa, 2011, A bacterial platform for fermentative production of plant alkaloids, Nat. Commun., 2, 326, 10.1038/ncomms1327
Nakagawa, 2014, (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli, Sci. Rep., 4, 6695, 10.1038/srep06695
Nakamura, 2003, Metabolic engineering for the microbial production of 1,3-propanediol, Curr. Opin. Biotechnol., 14, 454, 10.1016/j.copbio.2003.08.005
Nash, 2011, Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein, Proc. Natl. Acad. Sci. U S A, 108, 9449, 10.1073/pnas.1100262108
Ohnson, 2001, Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene, J. Bacteriol., 183, 1577, 10.1128/JB.183.5.1577-1584.2001
Orhan, 2007, Antiviral and antimicrobial profiles of selected isoquinoline alkaloids from fumaria and corydalis species, Z. Naturforsch. C, 62, 19, 10.1515/znc-2007-1-204
Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051
Peng, 2018, An expanded heterologous GAL promoter collection for diauxie-inducible expression in Saccharomyces cerevisiae, ACS. Synth. Biol., 7, 748, 10.1021/acssynbio.7b00355
Phalip, 1999, Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake, Gene, 232, 43, 10.1016/S0378-1119(99)00117-1
Ping, 2019, De novo production of the plant-derived tropine and pseudotropine in yeast, ACS Synth. Biol., 8, 1257, 10.1021/acssynbio.9b00152
Plesa, 2018, Multiplexed gene synthesis in emulsions for exploring protein functional landscapes, Science, 359, 343, 10.1126/science.aao5167
Qiao, 2017, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol., 35, 173, 10.1038/nbt.3763
Qiu, 2019, Biosensors design in yeast and applications in metabolic engineering, FEMS Yeast Res., 19, foz082, 10.1093/femsyr/foz082
Qu, 2015, Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast, Proc. Natl. Acad. Sci. U S A, 112, 6224, 10.1073/pnas.1501821112
Radecka, 2015, Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res., 15, fov053, 10.1093/femsyr/fov053
Ramsey, 2006, Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast, Nat. Genet., 38, 1082, 10.1038/ng1869
Reyes, 2014, Improving carotenoids production in yeast via adaptive laboratory evolution, Metab. Eng., 21, 26, 10.1016/j.ymben.2013.11.002
Rodriguez, 2015, Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis, Metab. Eng., 31, 181, 10.1016/j.ymben.2015.08.003
Rodriguez, 2017, Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains, Metab. Eng., 44, 265, 10.1016/j.ymben.2017.10.013
Ruben, 2013, Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis, Science, 341, 1103, 10.1126/science.1241602
Ryabova, 2003, Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha, FEMS Yeast Res., 4, 157, 10.1016/S1567-1356(03)00146-6
Ryo, 2017, Positive feedback genetic circuit incorporating a constitutively active mutant Gal3 into yeast GAL induction system, ACS Synth. Biol., 6, 928, 10.1021/acssynbio.6b00262
Scalcinati, 2012, Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode, Metab. Eng., 14, 91, 10.1016/j.ymben.2012.01.007
Scheler, 2016, Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast, Nat. Commun., 7, 12942, 10.1038/ncomms12942
Schiroli, 2015, A subfamily of PLP-dependent enzymes specialized in handling terminal amines, Biochim. Biophys. Acta, 1854, 1200, 10.1016/j.bbapap.2015.02.023
Schuler, 2003, Functional genomics of P450s, Annu. Rev. Plant Biol., 54, 629, 10.1146/annurev.arplant.54.031902.134840
Schwartz, 2015, Synthetic RNA polymerase III promoters facilitate high efficiency CRISPR-Cas9 mediated genome editing in Yarrowia lipolytica, ACS. Synth. Biol., 5, 356, 10.1021/acssynbio.5b00162
Segler, 2018, Planning chemical syntheses with deep neural networks and symbolic AI, Nature, 555, 604, 10.1038/nature25978
Skellam, 2019, Strategies for engineering natural product biosynthesis in fungi, Trends Biotechnol., 37, 416, 10.1016/j.tibtech.2018.09.003
Smith, 2003, Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides, Proc. Natl. Acad. Sci. U S A, 100, 15440, 10.1073/pnas.2237126100
Srinivasan, 2019, Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids, Nat. Commun., 10, 3634, 10.1038/s41467-019-11588-w
Stanley Fernandez, 2000, Farnesyl diphosphate synthase. Altering the catalytic site to select for geranyl diphosphate activity, Biochemistry, 39, 15316, 10.1021/bi0014305
Stephanie, 2015, Complete biosynthesis of opioids in yeast, Science, 349, 1095, 10.1126/science.aac9373
Sun, 2012, Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae, Biotechnol. Bioeng., 109, 2082, 10.1002/bit.24481
Szczebara, 2003, Total biosynthesis of hydrocortisone from a simple carbon source in yeast, Nat. Biotechnol., 21, 143, 10.1038/nbt775
Szymanski, 2018, Designing with living systems in the synthetic yeast project, Nat. Commun., 9, 2950, 10.1038/s41467-018-05332-z
Tarshis, 1996, Regulation of product chain length by isoprenyl diphosphate synthases, Proc. Natl. Acad. Sci. U S A, 93, 15018, 10.1073/pnas.93.26.15018
Teresa Anna, 2013, FAD synthesis and degradation in the nucleus create a local flavin cofactor pool, J. Biol. Chem., 288, 29069, 10.1074/jbc.M113.500066
Thomas, 1997, Metabolism of sulfur amino acids in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 61, 503, 10.1128/.61.4.503-532.1997
Thomik, 2017, An artificial transport metabolon facilitates improved substrate utilization in yeast, Nat. Chem. Biol., 13, 1158, 10.1038/nchembio.2457
Tramontin, 2019, Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway, Microorganisms, 7, 472, 10.3390/microorganisms7100472
Trenchard, 2015, De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast, Metab. Eng., 31, 74, 10.1016/j.ymben.2015.06.010
Vidal, 2017, Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application, Biochim. Biophys. Acta, 1866, 327, 10.1016/j.bbapap.2017.11.005
Wang, 2014, Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa, Plant Cell, 26, 894, 10.1105/tpc.113.120881
Wang, 2015, Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts, Metab. Eng., 29, 97, 10.1016/j.ymben.2015.03.003
Wang, 2016, Improving 3'-hydroxygenistein production in recombinant Pichia pastoris using periodic hydrogen peroxide-shocking strategy, J. Microbiol. Biotechnol., 26, 498, 10.4014/jmb.1509.09013
Wang, 2019, Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency, Cell Discov., 5, 5, 10.1038/s41421-018-0075-5
Weber, 2014, Exploiting cell metabolism for biocatalytic whole-cell transamination by recombinant Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 98, 10, 10.1007/s00253-014-5576-z
Williams, 2016, Synthetic evolution of metabolic productivity using biosensors, Trends Biotechnol., 34, 371, 10.1016/j.tibtech.2016.02.002
Wong, 2018, De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae, Metab. Eng., 47, 94, 10.1016/j.ymben.2018.03.005
Wriessnegger, 2014, Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris, Metab. Eng., 24, 18, 10.1016/j.ymben.2014.04.001
Xiao, 2016, Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis, Nat. Chem. Biol., 12, 339, 10.1038/nchembio.2046
Yamanishi, 2013, A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox, ACS. Synth. Biol., 2, 337, 10.1021/sb300116y
Yan, 2014, Production of bioactive ginsenoside compound K in metabolically engineered yeast, Cell Res., 24, 770, 10.1038/cr.2014.28
Yan, 2015, Improvement of NADPH-dependent P450-mediated biotransformation of 7α,15α-diOH-DHEA from DHEA by a dual cosubstrate-coupled system, Steroids, 101, 15, 10.1016/j.steroids.2015.05.005
Yang, 2018, Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris : a review, Biotechnol. Adv., 36, 182, 10.1016/j.biotechadv.2017.11.002
Yao, 2018, Enhanced Isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae, ACS Synth. Biol., 7, 2308, 10.1021/acssynbio.8b00289
Yu, 2018, Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis, Cell, 174, 1549, 10.1016/j.cell.2018.07.013
Yuan, 2016, Mitochondrial acetyl-CoA utilization pathway for terpenoid productions, Metab. Eng., 38, 303, 10.1016/j.ymben.2016.07.008
Zhang, 2016, Modular co-culture engineering, a new approach for metabolic engineering, Metab. Eng., 37, 114, 10.1016/j.ymben.2016.05.007
Zhang, 2016, Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort, Plant Biotechnol. J., 14, 2217, 10.1111/pbi.12576
Zhang, 2019, Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory, Microb. Cell. Fact., 18, 160, 10.1186/s12934-019-1211-0
Zhang, 2019, Compartmentalized biosynthesis of mycophenolic acid, Proc. Natl. Acad. Sci. U S A, 116, 13305, 10.1073/pnas.1821932116
Zhang, 2019, Production of lycopene by metabolically engineered Pichia pastoris, Biosci. Biotechnol. Biochem., 84, 463, 10.1080/09168451.2019.1693250
Zhao, 2018, Optogenetic regulation of engineered cellular metabolism for microbial chemical production, Nature, 555, 683, 10.1038/nature26141
Zheng, 2004, An efficient one-step site-directed and site-saturation mutagenesis protocol, Nucleic Acids Res., 32, e115, 10.1093/nar/gnh110
Zhou, 2012, Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production, J. Am. Chem. Soc., 134, 3234, 10.1021/ja2114486
Zhou, 2015, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol., 33, 377, 10.1038/nbt.3095
Zhou, 2016, Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition, J. Am. Chem. Soc., 138, 15368, 10.1021/jacs.6b07394
Zhou, 2018, Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast, ACS Synth. Biol., 7, 584, 10.1021/acssynbio.7b00338
Zhu, 2017, Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast, Metab. Eng., 44, 81, 10.1016/j.ymben.2017.09.007
Ziemert, 2016, The evolution of genome mining in microbes–a review, Nat. Prod. Rep., 33, 988, 10.1039/C6NP00025H