Advanced Strategies for Production of Natural Products in Yeast

iScience - Tập 23 - Trang 100879 - 2020
Ruibing Chen1,2, Shan Yang1,3, Lei Zhang2,4, Yongjin J. Zhou1,5,6
1Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
2Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
5CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
6Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

Tài liệu tham khảo

Achmon, 2014, Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system, Appl. Microbiol. Biotechnol., 98, 3603, 10.1007/s00253-013-5269-z

Agapakis, 2012, Natural strategies for the spatial optimization of metabolism in synthetic biology, Nat. Chem. Biol., 8, 527, 10.1038/nchembio.975

Ahn, 2013, GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation, FEMS Yeast Res., 13, 140, 10.1111/j.1567-1364.2012.12009.x

Alford, 2017, The rosetta all-atom energy function for macromolecular modeling and design, J. Chem. Theor. Comput., 13, 3031, 10.1021/acs.jctc.7b00125

Atanasov, 2015, Discovery and resupply of pharmacologically active plant-derived natural products: a review, Biotechnol. Adv., 33, 1582, 10.1016/j.biotechadv.2015.08.001

Avalos, 2013, Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols, Nat. Biotechnol., 31, 335, 10.1038/nbt.2509

Bakker, 2001, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 25, 15, 10.1111/j.1574-6976.2001.tb00570.x

Baumann, 2018, A yeast-based biosensor for screening of short- and medium-chain fatty acid production, ACS Synth. Biol., 7, 2640, 10.1021/acssynbio.8b00309

Blount, 2018, Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome, Nat. Commun., 9, 1932, 10.1038/s41467-018-03143-w

Bracher, 2017, Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations, Appl. Environ. Microbiol., 83, 10.1128/AEM.00892-17

Brown, 2015, De novo production of the plant-derived alkaloid strictosidine in yeast, Proc. Natl. Acad. Sci. U S A, 112, 3205, 10.1073/pnas.1423555112

Buijs, 2015, Long-chain alkane production by the yeast Saccharomyces cerevisiae, Biotechnol. Bioeng., 112, 1275, 10.1002/bit.25522

Carbonell, 2018, An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals, Commun. Biol., 1, 66, 10.1038/s42003-018-0076-9

Cardenas, 2016, Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis, Metab. Eng., 36, 80, 10.1016/j.ymben.2016.02.009

Cardenas, 2014, Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone, Metab. Eng., 25, 194, 10.1016/j.ymben.2014.07.008

Cervin, M.A., Soucaille, P., and Valle, F. (2010). Process for the biological production of 1,3-propanediol with high yield. US. 7745184B2.

Chatzivasileiou, 2019, Two-step pathway for isoprenoid synthesis, Proc. Natl. Acad. Sci. U S A, 116, 506, 10.1073/pnas.1812935116

Chen, 2014, Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae, Metab. Eng., 22, 104, 10.1016/j.ymben.2014.01.005

Chen, 2015, Mitochondrial engineering of the TCA cycle for fumarate production, Metab. Eng., 31, 62, 10.1016/j.ymben.2015.02.002

Chen, 2017, Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production, RSC Adv., 7, 22409, 10.1039/C7RA02538F

Chen, 2017, Metabolic engineering of Escherichia coli for microbial synthesis of monolignols, Metab. Eng., 39, 102, 10.1016/j.ymben.2016.10.021

Chen, 2019, Identification of Absidia orchidis steroid 11beta-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone, Metab. Eng., 57, 31, 10.1016/j.ymben.2019.10.006

Cheng, 2019, Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae, ACS Synth. Biol., 8, 968, 10.1021/acssynbio.9b00135

Clomburg, 2019, The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis, Proc. Natl. Acad. Sci. U S A, 116, 12810, 10.1073/pnas.1821004116

Cronan, 2005, Function, attachment and synthesis of lipoic acid in Escherichia coli, Adv. Microb. Physiol., 50, 103, 10.1016/S0065-2911(05)50003-1

Curran, 2013, Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications, Metab. Eng., 19, 88, 10.1016/j.ymben.2013.07.001

Czajka, 2018, Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone, Microb. Cell. Fact., 17, 136, 10.1186/s12934-018-0984-x

Davey, 2017, Rational design of proteins that exchange on functional timescales, Nat. Chem. Biol., 13, 1280, 10.1038/nchembio.2503

De, 2014, Rapid and reliable DNA assembly via ligase cycling reaction, ACS Synth. Biol., 3, 97, 10.1021/sb4001992

Deloache, 2015, An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose, Nat. Chem. Biol., 11, 465, 10.1038/nchembio.1816

DeLoache, 2016, Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways, Nat. Commun., 7, 11152, 10.1038/ncomms11152

Du, 2016, Engineering Yarrowia lipolytica for campesterol overproduction, PLoS One, 11, e0146773, 10.1371/journal.pone.0146773

Eichenberger, 2017, Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties, Metab. Eng., 39, 80, 10.1016/j.ymben.2016.10.019

Eichenberger, 2018, De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae, FEMS Yeast Res., 18, foy046, 10.1093/femsyr/foy046

Ekr, 2018, A transcription factor-based biosensor for detection of itaconic acid, ACS. Synth. Biol., 7, 1436, 10.1021/acssynbio.8b00057

Eng, 2018, ClusterCAD: a computational platform for type I modular polyketide synthase design, Nucleic Acids Res., 46, D509, 10.1093/nar/gkx893

Engler, 2014, Golden gate cloning, Methods Mol. Biol., 1116, 119, 10.1007/978-1-62703-764-8_9

Fischer, 2011, Metabolic engineering of monoterpene synthesis in yeast, Biotechnol. Bioeng., 108, 1883, 10.1002/bit.23129

Fitzpatrick, 1999, Tetrahydropterin-dependent amino acid hydroxylases, Annu. Rev. Biochem., 68, 355, 10.1146/annurev.biochem.68.1.355

Galanie, 2015, Complete biosynthesis of opioids in yeast, Science, 349, 1095, 10.1126/science.aac9373

Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318

Gong, 2017, Engineering robustness of microbial cell factories, Biotechnol. J., 12, 1700014, 10.1002/biot.201700014

Grewal, 2018, Bioproduction of a betalain color palette in Saccharomyces cerevisiae, Metab. Eng., 45, 180, 10.1016/j.ymben.2017.12.008

Guo, 2013, CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts, Proc. Natl. Acad. Sci. U S A, 110, 12108, 10.1073/pnas.1218061110

Guo, 2016, Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones, New Phytol., 210, 525, 10.1111/nph.13790

Hammer, 2017, Harnessing yeast organelles for metabolic engineering, Nat. Chem. Biol., 13, 823, 10.1038/nchembio.2429

Hatlestad, 2012, The beet R locus encodes a new cytochrome P450 required for red betalain production, Nat. Genet., 44, 816, 10.1038/ng.2297

Havir, 1968, L-phenylalanine ammonia-lyase. II. Mechanism and kinetic properties of the enzyme from potato tubers, Biochemistry, 7, 1904, 10.1021/bi00845a039

Hawkins, 2008, Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae, Nat. Chem. Biol., 4, 564, 10.1038/nchembio.105

Heo, 2017, De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis, Microb. Cell. Fact., 16, 30, 10.1186/s12934-017-0644-6

Ignea, 2014, Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase, ACS Synth. Biol., 3, 298, 10.1021/sb400115e

Ignea, 2018, Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering, Nat. Chem. Biol., 14, 9, 10.1038/s41589-018-0166-5

Ignea, 2019, Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate, Nat. Commun., 10, 3799, 10.1038/s41467-019-11290-x

Jendresen, 2015, Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae, Appl. Environ. Microbiol., 81, 4458, 10.1128/AEM.00405-15

Jia, 2018, Precise control of SCRaMbLE in synthetic haploid and diploid yeast, Nat. Commun., 9, 1933, 10.1038/s41467-018-03084-4

Jiang, 2017, Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae, Metab. Eng., 41, 57, 10.1016/j.ymben.2017.03.005

Jiang, 2018, Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose, J. Agric. Food Chem., 66, 4431, 10.1021/acs.jafc.8b01272

Jun, 2018, Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase, Plant Physiol., 176, 1452, 10.1104/pp.17.01608

Kim, 2018, Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase, Nat. Commun., 9, 4867, 10.1038/s41467-018-07285-9

Kim, 2019, Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway, Metab. Eng., 56, 50, 10.1016/j.ymben.2019.08.013

Kirby, 2008, Metabolic engineering of microorganisms for isoprenoid production, Nat. Prod. Rep., 25, 656, 10.1039/b802939c

Kirby, 2009, Biosynthesis of plant isoprenoids: perspectives for microbial engineering, Annu. Rev. Plant Biol., 60, 335, 10.1146/annurev.arplant.043008.091955

Kozak, 2014, Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae, MBio, 5, 10.1128/mBio.01696-14

Larue, 2016, Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae, Biotechnol. Biofuels, 9, 1, 10.1186/s13068-016-0470-9

Lau, 2015, Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone, Science, 349, 1224, 10.1126/science.aac7202

Lau, 2018, Prokaryotic nanocompartments form synthetic organelles in a eukaryote, Nat. Commun., 9, 1311, 10.1038/s41467-018-03768-x

Levisson, 2019, Toward developing a yeast cell factory for the production of prenylated flavonoids, J. Agric. Food Chem., 67, 13478, 10.1021/acs.jafc.9b01367

Li, 2010, Biofuels: biomolecular engineering fundamentals and advances, Annu. Rev. Chem. Biomol. Eng., 1, 19, 10.1146/annurev-chembioeng-073009-100938

Li, 2014, Compartmentalizing metabolic pathway in Candida glabrata for acetoin production, Metab. Eng., 28, 1, 10.1016/j.ymben.2014.11.008

Li, 2015, De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae, Metab. Eng., 32, 1, 10.1016/j.ymben.2015.08.007

Li, 2015, Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening, ACS Synth. Biol., 4, 1308, 10.1021/acssynbio.5b00069

Li, 2018, Complete biosynthesis of noscapine and halogenated alkaloids in yeast, Proc. Natl. Acad. Sci. U S A, 115, E3922, 10.1073/pnas.1721469115

Li, 2019, Production of triterpene ginsenoside compound K in the non-conventional Yeast Yarrowia lipolytica, J. Agric. Food Chem., 67, 2581, 10.1021/acs.jafc.9b00009

Li, 2019, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng., 54, 1, 10.1016/j.ymben.2019.03.002

Lian, 2014, Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains, Metab. Eng., 24, 139, 10.1016/j.ymben.2014.05.010

Lian, 2018, Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications, Metab. Eng., 50, 85, 10.1016/j.ymben.2018.04.011

Lian, 2016, Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering, ACS Synth. Biol., 5, 689, 10.1021/acssynbio.6b00019

Liu, 2018, Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods, Nat. Commun., 9, 1936, 10.1038/s41467-018-04254-0

Liu, 2018, Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches, Nat. Commun., 9, 448, 10.1038/s41467-018-02883-z

Liu, 2018, Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol, Metab. Eng., 45, 189, 10.1016/j.ymben.2017.12.009

Liu, 2019, Rewiring carbon metabolism in yeast for high level production of aromatic chemicals, Nat. Commun., 10, 4976, 10.1038/s41467-019-12961-5

Luo, 2019, Complete biosynthesis of cannabinoids and their unnatural analogues in yeast, Nature, 567, 123, 10.1038/s41586-019-0978-9

Liu, 2020, The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction, Metab. Eng., 57, 151, 10.1016/j.ymben.2019.11.001

Lv, 2016, Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae, Nat. Commun., 7, 12851, 10.1038/ncomms12851

Lv, 2019, Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis, ACS Synth. Biol., 8, 2514, 10.1021/acssynbio.9b00193

Lyu, 2019, Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol, J. Agric. Food Chem., 67, 5596, 10.1021/acs.jafc.9b01329

Ma, 2019, Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae, J. Agric. Food Chem., 67, 8590, 10.1021/acs.jafc.9b03456

Mayer, 1999, A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha, Biotechnol. Bioeng., 63, 373, 10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T

Meadows, 2016, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature, 537, 694, 10.1038/nature19769

Medema, 2015, Computational approaches to natural product discovery, Nat. Chem. Biol., 11, 639, 10.1038/nchembio.1884

Mee, 2014, Syntrophic exchange in synthetic microbial communities, Proc. Natl. Acad. Sci. U S A, 111, E2149, 10.1073/pnas.1405641111

Meijer, 2010, Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum, Appl. Environ. Microbiol., 76, 5702, 10.1128/AEM.02327-09

Michener, 2012, Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases, Proc. Natl. Acad. Sci. U S A, 109, 19504, 10.1073/pnas.1212287109

Mikkelsen, 2012, Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform, Metab. Eng., 14, 104, 10.1016/j.ymben.2012.01.006

Minami, 2008, Microbial production of plant benzylisoquinoline alkaloids, Proc. Natl. Acad. Sci. U S A, 105, 7393, 10.1073/pnas.0802981105

Morris, 2018, An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production, J. Biol. Chem., 293, 13364, 10.1074/jbc.RA118.004067

Moser, 2018, Whole-cell (+)-ambrein production in the yeast Pichia pastoris, Metab. Eng. Commun., 7, e00077, 10.1016/j.mec.2018.e00077

Nakagawa, 2016, Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli, Nat. Commun., 7, 10390, 10.1038/ncomms10390

Nakagawa, 2011, A bacterial platform for fermentative production of plant alkaloids, Nat. Commun., 2, 326, 10.1038/ncomms1327

Nakagawa, 2014, (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli, Sci. Rep., 4, 6695, 10.1038/srep06695

Nakamura, 2003, Metabolic engineering for the microbial production of 1,3-propanediol, Curr. Opin. Biotechnol., 14, 454, 10.1016/j.copbio.2003.08.005

Nash, 2011, Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein, Proc. Natl. Acad. Sci. U S A, 108, 9449, 10.1073/pnas.1100262108

Nielsen, 2016, Engineering cellular metabolism, Cell, 164, 1185, 10.1016/j.cell.2016.02.004

Ohnson, 2001, Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene, J. Bacteriol., 183, 1577, 10.1128/JB.183.5.1577-1584.2001

Orhan, 2007, Antiviral and antimicrobial profiles of selected isoquinoline alkaloids from fumaria and corydalis species, Z. Naturforsch. C, 62, 19, 10.1515/znc-2007-1-204

Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051

Peng, 2018, An expanded heterologous GAL promoter collection for diauxie-inducible expression in Saccharomyces cerevisiae, ACS. Synth. Biol., 7, 748, 10.1021/acssynbio.7b00355

Phalip, 1999, Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake, Gene, 232, 43, 10.1016/S0378-1119(99)00117-1

Ping, 2019, De novo production of the plant-derived tropine and pseudotropine in yeast, ACS Synth. Biol., 8, 1257, 10.1021/acssynbio.9b00152

Plesa, 2018, Multiplexed gene synthesis in emulsions for exploring protein functional landscapes, Science, 359, 343, 10.1126/science.aao5167

Qiao, 2017, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol., 35, 173, 10.1038/nbt.3763

Qiu, 2019, Biosensors design in yeast and applications in metabolic engineering, FEMS Yeast Res., 19, foz082, 10.1093/femsyr/foz082

Qu, 2015, Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast, Proc. Natl. Acad. Sci. U S A, 112, 6224, 10.1073/pnas.1501821112

Radecka, 2015, Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res., 15, fov053, 10.1093/femsyr/fov053

Ramsey, 2006, Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast, Nat. Genet., 38, 1082, 10.1038/ng1869

Reyes, 2014, Improving carotenoids production in yeast via adaptive laboratory evolution, Metab. Eng., 21, 26, 10.1016/j.ymben.2013.11.002

Rock, 2009, Opening a new path to lipoic acid, J. Bacteriol., 191, 6782, 10.1128/JB.01151-09

Rodriguez, 2015, Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis, Metab. Eng., 31, 181, 10.1016/j.ymben.2015.08.003

Rodriguez, 2017, Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains, Metab. Eng., 44, 265, 10.1016/j.ymben.2017.10.013

Ruben, 2013, Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis, Science, 341, 1103, 10.1126/science.1241602

Ryabova, 2003, Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha, FEMS Yeast Res., 4, 157, 10.1016/S1567-1356(03)00146-6

Ryo, 2017, Positive feedback genetic circuit incorporating a constitutively active mutant Gal3 into yeast GAL induction system, ACS Synth. Biol., 6, 928, 10.1021/acssynbio.6b00262

Scalcinati, 2012, Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode, Metab. Eng., 14, 91, 10.1016/j.ymben.2012.01.007

Scheler, 2016, Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast, Nat. Commun., 7, 12942, 10.1038/ncomms12942

Schiroli, 2015, A subfamily of PLP-dependent enzymes specialized in handling terminal amines, Biochim. Biophys. Acta, 1854, 1200, 10.1016/j.bbapap.2015.02.023

Schuler, 2003, Functional genomics of P450s, Annu. Rev. Plant Biol., 54, 629, 10.1146/annurev.arplant.54.031902.134840

Schwartz, 2015, Synthetic RNA polymerase III promoters facilitate high efficiency CRISPR-Cas9 mediated genome editing in Yarrowia lipolytica, ACS. Synth. Biol., 5, 356, 10.1021/acssynbio.5b00162

Segler, 2018, Planning chemical syntheses with deep neural networks and symbolic AI, Nature, 555, 604, 10.1038/nature25978

Skellam, 2019, Strategies for engineering natural product biosynthesis in fungi, Trends Biotechnol., 37, 416, 10.1016/j.tibtech.2018.09.003

Smith, 2003, Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides, Proc. Natl. Acad. Sci. U S A, 100, 15440, 10.1073/pnas.2237126100

Srinivasan, 2019, Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids, Nat. Commun., 10, 3634, 10.1038/s41467-019-11588-w

Stanley Fernandez, 2000, Farnesyl diphosphate synthase. Altering the catalytic site to select for geranyl diphosphate activity, Biochemistry, 39, 15316, 10.1021/bi0014305

Stephanie, 2015, Complete biosynthesis of opioids in yeast, Science, 349, 1095, 10.1126/science.aac9373

Sun, 2012, Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae, Biotechnol. Bioeng., 109, 2082, 10.1002/bit.24481

Szczebara, 2003, Total biosynthesis of hydrocortisone from a simple carbon source in yeast, Nat. Biotechnol., 21, 143, 10.1038/nbt775

Szymanski, 2018, Designing with living systems in the synthetic yeast project, Nat. Commun., 9, 2950, 10.1038/s41467-018-05332-z

Tarshis, 1996, Regulation of product chain length by isoprenyl diphosphate synthases, Proc. Natl. Acad. Sci. U S A, 93, 15018, 10.1073/pnas.93.26.15018

Teresa Anna, 2013, FAD synthesis and degradation in the nucleus create a local flavin cofactor pool, J. Biol. Chem., 288, 29069, 10.1074/jbc.M113.500066

Thomas, 1997, Metabolism of sulfur amino acids in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 61, 503, 10.1128/.61.4.503-532.1997

Thomik, 2017, An artificial transport metabolon facilitates improved substrate utilization in yeast, Nat. Chem. Biol., 13, 1158, 10.1038/nchembio.2457

Tramontin, 2019, Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway, Microorganisms, 7, 472, 10.3390/microorganisms7100472

Trenchard, 2015, De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast, Metab. Eng., 31, 74, 10.1016/j.ymben.2015.06.010

Vidal, 2017, Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application, Biochim. Biophys. Acta, 1866, 327, 10.1016/j.bbapap.2017.11.005

Wang, 2014, Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa, Plant Cell, 26, 894, 10.1105/tpc.113.120881

Wang, 2015, Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts, Metab. Eng., 29, 97, 10.1016/j.ymben.2015.03.003

Wang, 2016, Improving 3'-hydroxygenistein production in recombinant Pichia pastoris using periodic hydrogen peroxide-shocking strategy, J. Microbiol. Biotechnol., 26, 498, 10.4014/jmb.1509.09013

Wang, 2019, Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency, Cell Discov., 5, 5, 10.1038/s41421-018-0075-5

Weber, 2014, Exploiting cell metabolism for biocatalytic whole-cell transamination by recombinant Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 98, 10, 10.1007/s00253-014-5576-z

Williams, 2016, Synthetic evolution of metabolic productivity using biosensors, Trends Biotechnol., 34, 371, 10.1016/j.tibtech.2016.02.002

Wong, 2018, De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae, Metab. Eng., 47, 94, 10.1016/j.ymben.2018.03.005

Wriessnegger, 2014, Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris, Metab. Eng., 24, 18, 10.1016/j.ymben.2014.04.001

Xiao, 2016, Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis, Nat. Chem. Biol., 12, 339, 10.1038/nchembio.2046

Yamanishi, 2013, A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox, ACS. Synth. Biol., 2, 337, 10.1021/sb300116y

Yan, 2014, Production of bioactive ginsenoside compound K in metabolically engineered yeast, Cell Res., 24, 770, 10.1038/cr.2014.28

Yan, 2015, Improvement of NADPH-dependent P450-mediated biotransformation of 7α,15α-diOH-DHEA from DHEA by a dual cosubstrate-coupled system, Steroids, 101, 15, 10.1016/j.steroids.2015.05.005

Yang, 2018, Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris : a review, Biotechnol. Adv., 36, 182, 10.1016/j.biotechadv.2017.11.002

Yao, 2018, Enhanced Isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae, ACS Synth. Biol., 7, 2308, 10.1021/acssynbio.8b00289

Yu, 2018, Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis, Cell, 174, 1549, 10.1016/j.cell.2018.07.013

Yuan, 2016, Mitochondrial acetyl-CoA utilization pathway for terpenoid productions, Metab. Eng., 38, 303, 10.1016/j.ymben.2016.07.008

Zhang, 2016, Modular co-culture engineering, a new approach for metabolic engineering, Metab. Eng., 37, 114, 10.1016/j.ymben.2016.05.007

Zhang, 2016, Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort, Plant Biotechnol. J., 14, 2217, 10.1111/pbi.12576

Zhang, 2019, Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory, Microb. Cell. Fact., 18, 160, 10.1186/s12934-019-1211-0

Zhang, 2019, Compartmentalized biosynthesis of mycophenolic acid, Proc. Natl. Acad. Sci. U S A, 116, 13305, 10.1073/pnas.1821932116

Zhang, 2019, Production of lycopene by metabolically engineered Pichia pastoris, Biosci. Biotechnol. Biochem., 84, 463, 10.1080/09168451.2019.1693250

Zhao, 2018, Optogenetic regulation of engineered cellular metabolism for microbial chemical production, Nature, 555, 683, 10.1038/nature26141

Zheng, 2004, An efficient one-step site-directed and site-saturation mutagenesis protocol, Nucleic Acids Res., 32, e115, 10.1093/nar/gnh110

Zhou, 2018, Expanding the terpenoid kingdom, Nat. Chem. Biol., 14, 1069, 10.1038/s41589-018-0167-4

Zhou, 2012, Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production, J. Am. Chem. Soc., 134, 3234, 10.1021/ja2114486

Zhou, 2015, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol., 33, 377, 10.1038/nbt.3095

Zhou, 2016, Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition, J. Am. Chem. Soc., 138, 15368, 10.1021/jacs.6b07394

Zhou, 2018, Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast, ACS Synth. Biol., 7, 584, 10.1021/acssynbio.7b00338

Zhu, 2017, Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast, Metab. Eng., 44, 81, 10.1016/j.ymben.2017.09.007

Ziemert, 2016, The evolution of genome mining in microbes–a review, Nat. Prod. Rep., 33, 988, 10.1039/C6NP00025H

Zou, 2014, Structure and mechanism of a nonhaem-iron SAM-dependent C-methyltransferase and its engineering to a hydratase and an O-methyltransferase, Acta Crystallogr. D Biol. Crystallogr., 70, 1549, 10.1107/S1399004714005239