Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances
Tài liệu tham khảo
Alani, 1987, A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains, Genetics, 116, 541, 10.1093/genetics/116.4.541
Albert, 1995, Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome, Plant J., 7, 649, 10.1046/j.1365-313X.1995.7040649.x
Alper, 2009, Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?, Nat. Rev. Microbiol., 7, 715, 10.1038/nrmicro2186
Alper, 2005, Tuning genetic control through promoter engineering, Proc. Natl. Acad. Sci. U.S.A., 102, 12678, 10.1073/pnas.0504604102
Andrianantoandro, 2006, Synthetic biology: new engineering rules for an emerging discipline, Mol. Syst. Biol., 2
Arakawa, 2001, Mutant loxP vectors for selectable marker recycle and conditional knock-outs, BMC Biotechnol., 1, 7, 10.1186/1472-6750-1-7
Bao, 2015, Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k
Barth, 2013
Baudin, 1993, A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 21, 3329, 10.1093/nar/21.14.3329
Beekwilder, 2014, Polycistronic expression of a beta-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to beta-ionone production, J. Biotechnol., 192 Pt B, 383, 10.1016/j.jbiotec.2013.12.016
Benton, 1990, Signal-mediated import of bacteriophage T7 RNA polymerase into the Saccharomyces cerevisiae nucleus and specific transcription of target genes, Mol. Cell. Biol., 10, 353
Berg, 2013, Combinatorial mutagenesis and selection to understand and improve yeast promoters, BioMed Res. Int., 2013, e926985, 10.1155/2013/926985
Bianchi, 1987, Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1, Curr. Genet., 12, 185, 10.1007/BF00436877
Bianchi, 2001, Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene, Appl. Environ. Microbiol., 67, 5621, 10.1128/AEM.67.12.5621-5625.2001
Blanchin-Roland, 1994, Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica, Mol. Cell. Biol., 14, 327
Blazeck, 2011, Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach, Appl. Environ. Microbiol., 77, 7905, 10.1128/AEM.05763-11
Blazeck, 2012, Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters, Biotechnol. Bioeng., 109, 2884, 10.1002/bit.24552
Blazeck, 2012, Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica, Appl. Microbiol. Biotechnol., 97, 3037, 10.1007/s00253-012-4421-5
Blazeck, 2014, Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production, Nat. Commun., 5, 3131, 10.1038/ncomms4131
Blount, 2012, Construction of synthetic regulatory networks in yeast, FEBS Lett., 586, 2112, 10.1016/j.febslet.2012.01.053
Bogdanova, 1995, Plasmid reorganization during integrative transformation in Hansenula polymorpha, Yeast, 11, 343, 10.1002/yea.320110407
Bretthauer, 1999, Glycosylation of Pichia pastoris-derived proteins, Biotechnol. Appl. Biochem., 30, 193
Brierley, R.A. et al., 1997. Production of Insulin-like Growth Factor-1 in Methylotrophic Yeast Cells. Google Patents.
Broach, 1980, Replication and recombination functions associated with the yeast plasmid, 2μ circle, Cell, 21, 501, 10.1016/0092-8674(80)90487-0
Buckholz, 1991, Yeast systems for the commercial production of heterologous proteins, Biotechnology (NY), 9, 1067, 10.1038/nbt1191-1067
Cameron, 2014, A brief history of synthetic biology, Nat. Rev. Microbiol., 12, 381, 10.1038/nrmicro3239
Carroll, 2011, Genome engineering with zinc-finger nucleases, Genetics, 188, 773, 10.1534/genetics.111.131433
Cereghino, 2000, Heterologous protein expression in the methylotrophic yeast Pichia pastoris, FEMS Microbiol. Rev., 24, 45, 10.1111/j.1574-6976.2000.tb00532.x
Chen, 2013, Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks, Curr. Opin. Biotechnol., 24, 965, 10.1016/j.copbio.2013.03.008
Cheon, 2003, Isolation and characterization of the TRP1 gene from the yeast Yarrowia lipolytica and multiple gene disruption using a TRP blaster, Yeast, 20, 677, 10.1002/yea.987
Cheon, 2009, New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha, Yeast, 26, 507, 10.1002/yea.1701
Cheon, 2012, Remodeling of the glycosylation pathway in the methylotrophic yeast Hansenula polymorpha to produce human hybrid-type N-glycans, J. Microbiol., 50, 341, 10.1007/s12275-012-2097-2
Cicardi, 2010, Ecallantide for the treatment of acute attacks in hereditary angioedema, N. Engl. J. Med., 363, 523, 10.1056/NEJMoa0905079
Clarke, 1980, Isolation of a yeast centromere and construction of functional small circular chromosomes, Nature, 287, 504, 10.1038/287504a0
Colussi, 2005, Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis, Appl. Environ. Microbiol., 71, 7092, 10.1128/AEM.71.11.7092-7098.2005
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Cox, 2000, Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter, Yeast, 16, 1191, 10.1002/1097-0061(20000930)16:13<1191::AID-YEA589>3.0.CO;2-2
Cregg, 1985, Pichia pastoris as a host system for transformations, Mol. Cell. Biol., 5, 3376
Crook, 2014, Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering, ACS Synth. Biol., 3, 307, 10.1021/sb4001432
Curran, 2013, Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications, Metab. Eng., 19, 88, 10.1016/j.ymben.2013.07.001
Curran, 2014, Design of synthetic yeast promoters via tuning of nucleosome architecture, Nat. Commun., 5, 4002, 10.1038/ncomms5002
Curran, 2015, Short synthetic terminators for improved heterologous gene expression in yeast, ACS Synth. Biol., 10.1021/sb5003357
Das, 1982, A high-frequency transformation system for the yeast Kluyveromyces lactis, Curr. Genet., 6, 123, 10.1007/BF00435211
Davidow, L., Dezeeuw, J., 1984. Process for Transformation of Yarrowia lipolytica. US Patent Application US4880741.
de Felipe, 2003, Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide, J. Biol. Chem., 278, 11441, 10.1074/jbc.M211644200
De Schutter, 2009, Genome sequence of the recombinant protein production host Pichia pastoris, Nat. Biotechnol., 27, 561, 10.1038/nbt.1544
DiCarlo, 2013, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 10.1093/nar/gkt135
Dickson, 1989, The lactose-galactose regulon of Kluyveromyces lactis, Biotechnology, 13, 19
Dickson, 1981, Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid, Mol. Cell. Biol., 1, 1048
Dijkstra, 2014, Diversity in robustness of Lactococcus lactis strains during heat stress, oxidative stress, and spray drying stress, Appl. Environ. Microbiol., 80, 603, 10.1128/AEM.03434-13
Dominguez, 1998, Non-conventional yeasts as hosts for heterologous protein production, Int. Microbiol., 1, 131
Doyon, 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures, Nat. Methods, 8, 74, 10.1038/nmeth.1539
Drinnenberg, 2009, RNAi in budding yeast, Science, 326, 544, 10.1126/science.1176945
Dujon, 2004, Genome evolution in yeasts, Nature, 430, 35, 10.1038/nature02579
Dulermo, 2014, The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica, FEMS Yeast Res., 14, 883, 10.1111/1567-1364.12177
Edwards, 2010, Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae, Yeast (Chichester, England), 27, 229
Epinat, 2003, A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells, Nucleic Acids Res., 31, 2952, 10.1093/nar/gkg375
Faber, 1992, Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha, J. Gen. Microbiol., 138, 2405, 10.1099/00221287-138-11-2405
Faber, 1994, Highly-efficient electrotransformation of the yeast Hansenula polymorpha, Curr. Genet., 25, 305, 10.1007/BF00351482
Farr, 2013
Ferrer-Miralles, 2009, Microbial factories for recombinant pharmaceuticals, Microb. Cell Fact., 8, 17, 10.1186/1475-2859-8-17
Fickers, 2003, New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica, J. Microbiol. Methods, 55, 727, 10.1016/j.mimet.2003.07.003
Forster, 2007, Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica, Appl. Microbiol. Biotechnol., 75, 1409, 10.1007/s00253-007-0958-0
Fraatz, 2014, Food and feed enzymes, 236
Gaillardin, C. et al., 1985. Vecteur de transformation de la levure Yarrowia lipolytica, procédé de transformation et levure transformée. French Patent Application FR2566424 (A1).
Gao, 2014, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol., 56, 343, 10.1111/jipb.12152
Geier, 2015, Compact multi-enzyme pathways in P. pastoris, Chem. Commun. (Camb.), 51, 1643, 10.1039/C4CC08502G
Geisberg, 2014, Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast, Cell, 156, 812, 10.1016/j.cell.2013.12.026
Gellissen, 1997, Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review, Gene, 190, 87, 10.1016/S0378-1119(97)00020-6
Gellissen, 2005, New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica – a comparison, FEMS Yeast Res., 5, 1079, 10.1016/j.femsyr.2005.06.004
Gibbs, 2000, Growth of filamentous fungi in submerged culture: problems and possible solutions, Crit. Rev. Biotechnol., 20, 17, 10.1080/07388550091144177
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Hahn-Hägerdal, 2005, Role of cultivation media in the development of yeast strains for large scale industrial use, Microb. Cell Fact., 4, 31, 10.1186/1475-2859-4-31
Hartner, 2008, Promoter library designed for fine-tuned gene expression in Pichia pastoris, Nucleic Acids Res., 36, e76, 10.1093/nar/gkn369
Heo, 2003, Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene, FEMS Yeast Res., 4, 175, 10.1016/S1567-1356(03)00150-8
Herrero, 1990, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria, J. Bacteriol., 172, 6557, 10.1128/jb.172.11.6557-6567.1990
Hoess, 1990, The Cre-lox recombination system, 99, 10.1007/978-3-642-84150-7_6
Hong, 2012, Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter, Yeast, 29, 59, 10.1002/yea.1917
Horwitz, 2015, Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas, Cell Syst., 10.1016/j.cels.2015.02.001
Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010
Iwata, 2004, Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis, Biotechnol. Lett., 26, 1803, 10.1007/s10529-004-4614-9
Iyer, 2005, A mutation in the STN1 gene triggers an alternative lengthening of telomere-like runaway recombinational telomere elongation and rapid deletion in yeast, Mol. Cell. Biol., 25, 8064, 10.1128/MCB.25.18.8064-8073.2005
Jacobs, 2014, Implementation of the CRISPR-Cas9 system in fission yeast, Nat. Commun., 5, 5344, 10.1038/ncomms6344
Janowicz, 1991, Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha, Yeast, 7, 431, 10.1002/yea.320070502
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Jungo, 2007, Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures, J. Biotechnol., 128, 824, 10.1016/j.jbiotec.2006.12.024
Kannan, 2009, A tandem mass spectrometric approach to the identification of O-glycosylated glargine glycoforms in active pharmaceutical ingredient expressed in Pichia pastoris, Rapid Commun. Mass Spectrom., 23, 1035, 10.1002/rcm.3965
Karim, 2013, Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications, FEMS Yeast Res., 13, 107, 10.1111/1567-1364.12016
Kawai, 2010, Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism, Bioeng. Bugs., 1, 395, 10.4161/bbug.1.6.13257
Khalil, 2012, A synthetic biology framework for programming eukaryotic transcription functions, Cell, 150, 647, 10.1016/j.cell.2012.05.045
Kiers, 1998, Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359, Yeast, 14, 459, 10.1002/(SICI)1097-0061(19980330)14:5<459::AID-YEA248>3.0.CO;2-O
Kim, 2011, High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice, PLoS ONE, 6, e18556, 10.1371/journal.pone.0018556
Kim, 2014, Yeast synthetic biology for the production of recombinant therapeutic proteins, FEMS Yeast Res., 10.1111/1567-1364.12195
Kooistra, 2004, Efficient gene targeting in Kluyveromyces lactis, Yeast, 21, 781, 10.1002/yea.1131
Krainer, 2013, Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris, Sci. Rep., 3, 3279, 10.1038/srep03279
Krappmann, 2000, HARO7 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization, J. Bacteriol., 182, 4188, 10.1128/JB.182.15.4188-4197.2000
Krasovska, 2007, Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression, Biotechnol. Bioeng., 97, 858, 10.1002/bit.21284
Krogh, 2004, Recombination proteins in yeast, Annu. Rev. Genet., 38, 233, 10.1146/annurev.genet.38.072902.091500
Kulkarni, 2006, Immunogenicity of a new, low-cost recombinant hepatitis B vaccine derived from Hansenula polymorpha in adults, Vaccine, 24, 3457, 10.1016/j.vaccine.2006.02.008
Larson, 2013, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc., 8, 2180, 10.1038/nprot.2013.132
Lee, 2005, An episomal expression vector for screening mutant gene libraries in Pichia pastoris, Plasmid, 54, 80, 10.1016/j.plasmid.2004.12.001
Lee, 2015, A highly characterized yeast toolkit for modular, multipart assembly, ACS Synth. Biol., 10.1021/sb500366v
Li, 2011, Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes, Nucleic Acids Res., 39, 6315, 10.1093/nar/gkr188
Liang, 2012, Internal ribosome entry site mediates protein synthesis in yeast Pichia pastoris, Biotechnol. Lett., 34, 957, 10.1007/s10529-012-0862-2
Liang, 2013, Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae, Nucleic Acids Res., 41, e54, 10.1093/nar/gks1293
Ling, 2014, Microbial tolerance engineering toward biochemical production: from lignocellulose to products, Curr. Opin. Biotechnol., 29, 99, 10.1016/j.copbio.2014.03.005
Liu, 2009, Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis, J. Biotechnol., 143, 95, 10.1016/j.jbiotec.2009.06.016
Liu, 2013, Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces, Curr. Opin. Biotechnol., 24, 1023, 10.1016/j.copbio.2013.03.005
Liu, 2014, Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function, FEMS Yeast Res., 14, 1124
Longtine, 1998, Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, 14, 953, 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
Madzak, 2015, Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering, Appl. Microbiol. Biotechnol., 99, 4559, 10.1007/s00253-015-6624-z
Madzak, 1999, Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter, Microbiology, 145, 75, 10.1099/13500872-145-1-75
Madzak, 2000, Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica, J. Mol. Microbiol. Biotechnol., 2, 207
Mans, 2015, CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae, FEMS Yeast Res., 15
Markland, 1996, Iterative optimization of high-affinity protease inhibitors using phage display. 2. Plasma kallikrein and thrombin, Biochemistry, 35, 8058, 10.1021/bi952629y
Marx, 2008, Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris, Microb. Cell Fact., 7, 23, 10.1186/1475-2859-7-23
Mateos, 2006, Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a myb-related transcription factor in the fungus Ashbya gossypii, Appl. Environ. Microbiol., 72, 5052, 10.1128/AEM.00424-06
Matthäus, 2014, Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica, Appl. Environ. Microbiol., 80, 1660, 10.1128/AEM.03167-13
Mayer, 1999, An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha, Biotechnol. Bioeng., 63, 373, 10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T
Mironczuk, 2014, Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures, J. Ind. Microbiol. Biotechnol., 41, 57, 10.1007/s10295-013-1380-5
Mischo, 2013, Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast, Biochim. Biophys. Acta, 1829, 174, 10.1016/j.bbagrm.2012.10.003
Muller, 1998, Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica, Yeast, 14, 1267, 10.1002/(SICI)1097-0061(1998100)14:14<1267::AID-YEA327>3.0.CO;2-2
Mumberg, 1995, Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds, Gene, 156, 119, 10.1016/0378-1119(95)00037-7
Näätsaari, 2012, Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology, PLoS ONE, 7, e39720, 10.1371/journal.pone.0039720
NEB, 2015. K. lactis Protein Expression Kit. <https://www.neb.com/products/e1000-k-lactis-protein-expression-kit> (accessed 21.08.15).
Nett, 2003, Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris, Yeast, 20, 1279, 10.1002/yea.1049
Nevoigt, 2006, Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 72, 5266, 10.1128/AEM.00530-06
Nielsen, 2013, Metabolic engineering of yeast for production of fuels and chemicals, Curr. Opin. Biotechnol., 24, 398, 10.1016/j.copbio.2013.03.023
Ogrydziak, 1977, Regulation of extracellular protease production in Candida lipolytica, Biochim. Biophys. Acta, 497, 525, 10.1016/0304-4165(77)90209-4
Orr-Weaver, 1981, Yeast transformation: a model system for the study of recombination, Proc. Natl. Acad. Sci. U.S.A., 78, 6354, 10.1073/pnas.78.10.6354
Pan, 2011, Sequential deletion of Pichia pastoris genes by a self-excisable cassette, FEMS Yeast Res., 11, 292, 10.1111/j.1567-1364.2011.00716.x
Park, 2008, Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes, Appl. Microbiol. Biotechnol., 81, 43, 10.1007/s00253-008-1634-8
Peralta-Yahya, 2012, Microbial engineering for the production of advanced biofuels, Nature, 488, 320, 10.1038/nature11478
Purnick, 2009, The second wave of synthetic biology: from modules to systems, Nat. Rev. Mol. Cell Biol., 10, 410, 10.1038/nrm2698
Qin, 2011, GAP promoter library for fine-tuning of gene expression in Pichia pastoris, Appl. Environ. Microbiol., 77, 3600, 10.1128/AEM.02843-10
Radecka, 2015, Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res., 15
Ramezani-Rad, 2003, The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis, FEMS Yeast Res., 4, 207, 10.1016/S1567-1356(03)00125-9
Redden, 2015, The development and characterization of synthetic minimal yeast promoters, Nat. Commun., 6, 7810, 10.1038/ncomms8810
Rodicio, 2013, Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis, Yeast, 30, 165, 10.1002/yea.2954
Roggenkamp, 1986, Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors, Mol. Gen. Genet. – MGG, 202, 302, 10.1007/BF00331655
Rosa, 2013, Metabolic engineering of Kluyveromyces lactis for l-ascorbic acid (vitamin C) biosynthesis, Microb. Cell Fact., 12, 59, 10.1186/1475-2859-12-59
Ruth, 2010, Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris, Syst. Synth. Biol., 4, 181, 10.1007/s11693-010-9057-0
Rymowicz, 2010, Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes, Appl. Microbiol. Biotechnol., 87, 971, 10.1007/s00253-010-2561-z
Saraya, 2012, Novel genetic tools for Hansenula polymorpha, FEMS Yeast Res., 12, 271, 10.1111/j.1567-1364.2011.00772.x
Saraya, 2014, Tools for genetic engineering of the yeast Hansenula polymorpha, 43
Sauer, 1987, Functional expression of the Cre–lox site-specific recombination system in the yeast Saccharomyces cerevisiae, Mol. Cell. Biol., 7, 2087
Sherman, 2009, Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes, Nucleic Acids Res., 37, D550, 10.1093/nar/gkn859
Sikorski, 1989, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 122, 19, 10.1093/genetics/122.1.19
Song, 2015, Scarless gene deletion in methylotrophic Hansenula polymorpha by using Mazf as counter-selectable marker, Anal. Biochem., 468, 66, 10.1016/j.ab.2014.09.006
Sreekrishna, 1997, Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris, Eukary. Exp. Vector Syst.: Biol. Appl., 190, 55
Stahmann, 2001, Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light, Environ. Microbiol., 3, 545, 10.1046/j.1462-2920.2001.00225.x
Steensma, 2001, Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis, Yeast, 18, 469, 10.1002/yea.696
Sternberg, 1981, Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites, J. Mol. Biol., 150, 467, 10.1016/0022-2836(81)90375-2
Suk, 2011, Reconstitution of human RNA interference in budding yeast, Nucleic Acids Res., 39, e43, 10.1093/nar/gkq1321
Suwannarangsee, 2010, Characterization of alcohol dehydrogenase 1 of the thermotolerant methylotrophic yeast Hansenula polymorpha, Appl. Microbiol. Biotechnol., 88, 497, 10.1007/s00253-010-2752-7
Swinkels, 1993, The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression, Antonie Van Leeuwenhoek, 64, 187, 10.1007/BF00873027
Szymczak, 2005, Development of 2A peptide-based strategies in the design of multicistronic vectors, Exp. Opin. Biol. Ther., 5, 627, 10.1517/14712598.5.5.627
Tai, 2013, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metab. Eng., 15, 1, 10.1016/j.ymben.2012.08.007
Teo, 2014, Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae, Biotechnol. Bioeng., 111, 144, 10.1002/bit.25001
Thompson, 2001, Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element, Proc. Natl. Acad. Sci. U.S.A., 98, 12972, 10.1073/pnas.241286698
Tschopp, 1987, Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris, Nucleic Acids Res., 15, 3859, 10.1093/nar/15.9.3859
Unkles, 2014, Synthetic biology tools for bioprospecting of natural products in eukaryotes, Chem. Biol., 21, 502, 10.1016/j.chembiol.2014.02.010
van den Berg, 2014
Van den Berg, 1990, Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin, Nat. Biotechnol., 8, 135, 10.1038/nbt0290-135
Van Ooyen, 2006, Heterologous protein production in the yeast Kluyveromyces lactis, FEMS Yeast Res., 6, 381, 10.1111/j.1567-1364.2006.00049.x
Verbeke, 2013, Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains, Biotechnol. Lett., 35, 571, 10.1007/s10529-012-1107-0
Vogl, 2013, New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris, Curr. Opin. Biotechnol., 24, 1094, 10.1016/j.copbio.2013.02.024
Vogl, 2014, Synthetic core promoters for Pichia pastoris, ACS Synth. Biol., 3, 188, 10.1021/sb400091p
Vyas, 2015, A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families, Sci. Adv., 1, e1500248, 10.1126/sciadv.1500248
Weninger, 2015, A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris, FEMS Yeast Res., 15
Westfall, 2012, Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin, Proc. Natl. Acad. Sci. U.S.A., 109, E111, 10.1073/pnas.1110740109
Weydemann, 1995, High-level secretion of hirudin by Hansenula polymorpha—authentic processing of three different preprohirudins, Appl. Microbiol. Biotechnol., 44, 377, 10.1007/BF00169932
Wildt, 2005, The humanization of N-glycosylation pathways in yeast, Nat. Rev. Microbiol., 3, 119, 10.1038/nrmicro1087
Wolf, 2012
Xue, 2013, Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica, Nat. Biotechnol., 31, 734, 10.1038/nbt.2622
Yamanishi, 2013, A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a “terminatome” toolbox, ACS Synth. Biol., 2, 337, 10.1021/sb300116y
Yang, 2009, MazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris, FEMS Yeast Res., 9, 600, 10.1111/j.1567-1364.2009.00503.x
Yovkova, 2014, Engineering the alpha-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica, Appl. Microbiol. Biotechnol., 98, 2003, 10.1007/s00253-013-5369-9
Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052