Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion

Danna Lee1, Natoiya Lloyd1, Isak S. Pretorius2, Anthony R. Borneman1
1The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia
2Macquarie University, Sydney, NSW 2109, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Marienhagen J, Bott M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol. 2013;163:166–78.

Larsen M, Poll L. Odour thresholds of some important aroma compounds in raspberries. Z Für Lebensm-Unters Forsch. 1990;191:129–31.

Larsen M, Poll L, Callesen O, Lewis M. Relations between the content of aroma compounds and the sensory evaluation of 10 raspberry varieties (Rubus idaeus L). Acta Agric Scand. 1991;41:447–54.

Stabnikova O, Wang J-Y, Ivanov V. Value-added biotechnological products from organic wastes. In: Wang LK, Ivanov V, Tay J-H. Totowa, NJ, editors. Environmental biotechnology. Humana Press; 2010: 343–394.

Beekwilder J, van der Meer IM, Sibbesen O, Broekgaarden M, Qvist I, Mikkelsen JD, Hall RD. Microbial production of natural raspberry ketone. Biotechnol J. 2007;2:1270–9.

Yan Y, Huang L, Koffas MAG. Biosynthesis of 5-deoxyflavanones in microorganisms. Biotechnol J. 2007;2:1250–62.

Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol. 2010;76:3361–3.

Abe I, Takahashi Y, Morita H, Noguchi H. Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. Eur J Biochem. 2001;268:3354–9.

Abe T, Morita H, Noma H, Kohno T, Noguchi H, Abe I. Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorg Med Chem Lett. 2007;17:3161–6.

Varela C, Cárdenas J, Melo F, Agosin E. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast. 2005;22:369–83.

Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Appl Environ Microbiol. 2012;78:6068–77.

Baganz F, Hayes A, Marren D, Gardner DC, Oliver SG. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast. 1997;13:1563–73.

Voth WP, Richards JD, Shaw JM, Stillman DJ. Yeast vectors for integration at the HO locus. Nucleic Acids Res. 2001;29:e59.

Ohloff G. Recent developments in the field of naturally-occurring aroma components: progress in the chemistry of organic natural products. In: Herz W, Grisebach H, Kirby GW, editors. Progress in the chemistry of organic natural products. Vienna: Springer; 1978. vol. 35 p. 431–527.

Lu P, Feng M-G. Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol. 2008;79:579–87.

Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol. 2011;77:1033–40.

Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng. 2007;9:142–51.

Shin S-Y, Jung S-M, Kim M-D, Han NS, Seo J-H. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb Technol. 2012;51:211–6.

Borneman AR, Forgan AH, Pretorius IS, Chambers PJ. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008;8:1185–95.

Conrado RJ, Varner JD, DeLisa MP. Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol. 2008;19:492–9.

Herrero O, Ramón D, Orejas M. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng. 2008;10:78–86.

Pardo E, Rico J, Gil JV, Orejas M. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microb Cell Factories. 2015;14:136.

Storici F, Resnick MA. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 2006;409:329–45.

Wattanachaisaereekul S, Lantz AE, Nielsen ML, Nielsen J. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab Eng. 2008;10:246–54.

Krömer JO, Nunez-Bernal D, Averesch NJH, Hampe J, Varela J, Varela C. Production of aromatics in Saccharomyces cerevisiae—a feasibility study. J Biotechnol. 2013;163:184–93.

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.

Schmidt SA, Dillon S, Kolouchova R, Henschke PA, Chambers PJ. Impacts of variations in elemental nutrient concentration of Chardonnay musts on Saccharomyces cerevisiae fermentation kinetics and wine composition. Appl Microbiol Biotechnol. 2011;91:365–75.