Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation
Tóm tắt
Whole-cell biocatalysis based on metabolically active baker’s yeast with engineered transamination activity can be used to generate molecules carrying a chiral amine moiety. A prerequisite is though to express efficient ω-transaminases and to reach sufficient intracellular precursor levels. Herein, the efficiency of three different ω-transaminases originating from Capsicum chinense, Chromobacterium violaceum, and Ochrobactrum anthropi was compared for whole-cell catalyzed kinetic resolution of racemic 1-phenylethylamine to (R)-1-phenylethylamine. The gene from the most promising candidate, C. violaceum ω-transaminase (CV-TA), was expressed in a strain lacking pyruvate decarboxylase activity, which thereby accumulate the co-substrate pyruvate during glucose assimilation. However, the conversion increased only slightly under the applied reaction conditions. In parallel, the effect of increasing the intracellular pyridoxal-5′-phosphate (PLP) level by omission of thiamine during cultivation was investigated. It was found that without thiamine, PLP supplementation was redundant to keep high in vivo transamination activity. Furthermore, higher reaction rates were achieved using a strain containing several copies of CV-TA gene, highlighting the necessity to also increase the intracellular transaminase level. At last, this strain was also investigated for asymmetric whole-cell bioconversion of acetophenone to (S)-1-phenylethylamine using l-alanine as amine donor. Although functionality could be demonstrated, the activity was extremely low indicating that the native co-product removal system was unable to drive the reaction towards the amine under the applied reaction conditions. Altogether, our results demonstrate that (R)-1-phenylethylamine with >99% ee can be obtained via kinetic resolution at concentrations above 25 mM racemic substrate with glucose as sole co-substrate when combining appropriate genetic and process engineering approaches. Furthermore, the engineered yeast strain with highest transaminase activity was also shown to be operational as whole-cell catalyst for the production of (S)-1-phenylethylamine via asymmetric transamination of acetophenone, albeit with very low conversion.
Tài liệu tham khảo
Höhne M, Bornscheuer UT. Biocatalytic routes to optically active amines. ChemCatChem. 2009;1:42–51.
Nugent TC, El-Shazly M. Chiral amine synthesis—recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv Synth Catal. 2010;352:753–819.
Tufvesson P, Lima-Ramos J, Jensen JS, Al-Haque N, Neto W, Woodley JM. Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol Bioeng. 2011;108:1479–93.
Koszelewski D, Tauber K, Faber K, Kroutil W. ω-Transaminases for the synthesis of non-racemic alpha-chiral primary amines. Trends Biotechnol. 2010;28:324–32.
Gundersen M, Tufvesson P, Rackham EJ, Lloyd RC, Woodley JM. A Rapid selection procedure for simple commercial implementation of ω-transaminase reactions. Org Process Res Dev. 2016;20:602–8.
Savile C, Janey J, Mundorff E, Moore J, Tam S, Jarvis W, et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 2010;329:305–9.
Fuchs M, Koszelewski D, Tauber K, Kroutil W, Faber K. Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem Commun. 2010;46:5500–2.
Zepeck F, Nerdinger S, Krouth W, Fuchs C, Simon R. Stereoselective reductive amination of α-chiral aldehydes using ω-transaminases for the synthesis of precursors of pregabalin and brivaracetam. Patent Pub. No. WO/2016/075082.
Satianegara G, Rogers PL, Rosche B. Comparative studies on enzyme preparations and role of cell components for (R)-phenylacetylcarbinol production in a two-phase biotransformation. Biotechnol Bioeng. 2006;94:1189–95.
Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev. 2011;15:266–74.
Schrewe M, Julsing MK, Buhler B, Schmid A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev. 2013;42:6346–77.
Weber N, Gorwa-Grauslund M, Carlquist M. Exploiting cell metabolism for biocatalytic whole-cell transamination by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2014;98:4615–24.
Weber N, Gorwa-Grauslund M, Carlquist M. Engineered baker’s yeast as whole-cell biocatalyst for one-pot stereo-selective conversion of amines to alcohols. Microb Cell Fact. 2014;13:118.
Knudsen JD, Hägglöf C, Weber N, Gorwa-Grauslund M, Carlquist M. Increased availability of NADH in metabolically engineered baker’s yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion. Microb Cell Fact. 2016;5:37.
Kaulmann U, Smithies K, Smith MEB, Hailes HC, Ward JM. Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enz Microb Tech. 2007;41:628–37.
Yun H, Hwang B-Y, Lee J-H, Kim B-G. Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl Environ Microbiol. 2005;71:4220–4.
Park ES, Shin JS. ω-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Appl Environ Microbiol. 2013;79:4141–4.
Weber N, Ismail A, Gorwa-Grauslund M, Carlquist M. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC Biotechnol. 2014;14:25.
Clark SM, Di Leo R, Dhanoa PK, Van Cauwenberghe OR, Mullen RT, Shelp BJ. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot. 2009;60:1743–57.
Clark SM, Di Leo R, Van Cauwenberghe OR, Mullen RT, Shelp BJ. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot. 2009;60:3255–67.
Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast. 1996;12:247–57.
Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT. Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;174:73–9.
van Maris AJ, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol. 2004;70:159–66.
Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, et al. Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep. 2015;5:15630.
Rios-Solis L, Bayir N, Halim M, Du C, Ward J, Baganz F, et al. Non-linear kinetic modelling of reversible bioconversions: application to the transaminase catalyzed synthesis of chiral amino-alcohols. Biochem Eng J. 2013;73:38–48.
Klatte S, Wendisch VF. Redox self-sufficient whole cell biotransformation for amination of alcohols. Bioorg Med Chem. 2014;22:5578–85.
Dong YX, Sueda S, Nikawa J, Kondo H. Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. Eur J Biochem. 2004;271:745–52.
Burns KE, Xiang Y, Kinsland CL, McLafferty FW, Begley TP. Reconstitution and biochemical characterization of a new pyridoxal-5′-phosphate biosynthetic pathway. J Am Chem Soc. 2005;127:3682–3.
Hanes JW, Keresztes I, Begley TP. 13C NMR snapshots of the complex reaction coordinate of pyridoxal phosphate synthase. Nat Chem Biol. 2008;4:425–30.
Neuwirth M, Strohmeier M, Windeisen V, Wallner S, Deller S, Rippe K, et al. X-ray crystal structure of Saccharomyces cerevisiae Pdx1 provides insights into the oligomeric nature of PLP synthases. FEBS Lett. 2009;583:2179–86.
Zhang X, Teng Y-B, Liu J-P, He Y-X, Zhou K, Chen Y, et al. Structural insights into the catalytic mechanism of the yeast pyridoxal 5-phosphate synthase Snz1. Biochem J. 2010;432:445–54.
Loubbardi A, Marcireau C, Karst F, Guilloton M. Sterol uptake induced by an impairment of pyridoxal phosphate synthesis in Saccharomyces cerevisiae: cloning and sequencing of the PDX3 gene encoding pyridoxine (pyridoxamine) phosphate oxidase. J Bacteriol. 1995;177:1817–23.
Kanellis P, Gagliardi M, Banath JP, Szilard RK, Nakada S, Galicia S, et al. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions. PLoS Genet. 2007;3:e134.
Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501–17.
Nakamura I, Nishikawa Y, Kamihara T, Fukui S. Respiratory deficiency in Saccharomyces carlsbergensis 4228 caused by thiamine and its prevention by pyridoxine. Biochem Biophys Res Commun. 1974;59:771–6.
Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, et al. Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast. 2002;19:1261–76.
Schell U, Wohlgemuth R, Ward JM. Synthesis of pyridoxamine 5′-phosphate using an MBA:pyruvate transaminase as biocatalyst. J Mol Catal B Enz. 2009;59:279–85.
Humble MS, Cassimjee KE, Hakansson M, Kimbung YR, Walse B, Abedi V, et al. Crystal structures of the Chromobacterium violaceum ω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP. FEBS J. 2012;279:779–92.
Pronk JT, Steensma HY, van Dijken JP. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996;12:1607–33.
Oud B, Flores CM, Gancedo C, Zhang X, Trueheart J, Daran JM, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:131.
Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008;95:1487–99.
Park ES, Kim M, Shin JS. Molecular determinants for substrate selectivity of ω-transaminases. Appl Microbiol Biotechnol. 2012;93:2425–35.
Valkonen M, Mojzita D, Penttilä M, Bencina M. Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry. Appl Environ Microbiol. 2013;79:7179–87.
Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D. Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol. 2005;71:1515–21.
Bea HS, Seo YM, Cha MH, Kim BG, Yun H. Kinetic resolution of α-methylbenzylamine by recombinant Pichia pastoris expressing ω-transaminase. Biotechnol Bioprocess Eng. 2010;15:429–34.
Stambuk B, Dunn B, Alves S, Duval E, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res. 2009;19:2271–8.
Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H. Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem. 1997;272:19165–70.
Ishida S, Tazuya-Murayama K, Kijima Y, Yamada K. The direct precursor of the pyrimidine moiety of thiamin is not uracanic acid but histidine in Saccharomyces cerevisiae. J Nutr Sci Vitaminol. 2008;54:7–10.
Lai R, Huang S, Fenwick M, Hazra A, Zhang Z, Rajaskankar K, et al. Thiamin pyrimidine biosynthesis in Candida albicans: a remarkable reaction between histidine and pyridoxal phosphate. J Am Chem Soc. 2012;134:9157–9.
Mooney S, Leuendorf J, Hindrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009;14:239–351.
Klatte S, Wendisch VF. Role of l-alanine for redox self-sufficient amination of alcohols. Microb Cell Fact. 2015;14:9.
Höhne M, Kuhl S, Robins K, Bornscheuer UT. Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. ChemBioChem. 2008;9:363–5.
Postma E, Verduyn C, Scheffers W, van Dijken J. Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989;55:468–77.
Bengtsson O. Genetic traits beneficial for xylose utilisation by recombinant Saccharomyces cerevisiae. PhD Thesis. Lund: Lund University; 2008.