Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae
Tài liệu tham khảo
Arendt, 2017, An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids, Metab. Eng., 40, 165, 10.1016/j.ymben.2017.02.007
Ast, 2013, All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum, Crit. Rev. Biochem. Mol. Biol., 48, 273, 10.3109/10409238.2013.782999
Barlowe, 2013, Secretory protein biogenesis and traffic in the early secretory pathway, Genetics, 193, 383, 10.1534/genetics.112.142810
Barrero, 2018, An improved secretion signal enhances the secretion of model proteins from Pichia pastoris, Microb. Cell Factories, 1
Bendtsen, 2004, Improved prediction of signal peptides : SignalP 3 . 0, J. Mol. Biol., 340, 783, 10.1016/j.jmb.2004.05.028
Bonifacino, 2004, The mechanisms of vesicle budding and fusion, Cell, 116, 153, 10.1016/S0092-8674(03)01079-1
Brake, 1984, Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 81, 4642, 10.1073/pnas.81.15.4642
Bukau, 1998, The Hsp70 and Hsp60 chaperone machines, Cell, 92, 351, 10.1016/S0092-8674(00)80928-9
Butz, 2003, Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast, Biotechnol. Bioeng., 84, 292, 10.1002/bit.10771
Chartron, 2016, J. Cotranslational signal-independent SRP preloading during membrane targeting, Nature, 536, 224, 10.1038/nature19309
Chen, 2012, Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production, FEMS Yeast Res., 12, 598, 10.1111/j.1567-1364.2012.00809.x
Chigira, 2008, Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains, Glycobiology, 18, 303, 10.1093/glycob/cwn008
Choi, 2014, Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase, J. Biotechnol., 187, 56, 10.1016/j.jbiotec.2014.07.430
Costa, 2018, Defining the physiological role of SRP in protein-targeting efficiency and specificity, Science, 359, 689, 10.1126/science.aar3607
Dancourt, 2010, Protein sorting receptors in the early secretory pathway, Annu. Rev. Biochem., 79, 777, 10.1146/annurev-biochem-061608-091319
Davison, 2016, Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains, Appl. Microbiol. Biotechnol., 100, 8241, 10.1007/s00253-016-7735-x
de Ruijter, 2016, Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum, Microb. Cell Factories, 15, 1, 10.1186/s12934-016-0488-5
Ernst, 1986, Improved secretion of heterologous proteins by Saccharomyces cerevisiae : effects of promoter substitutions in alpha factor fusions, DNA, 5, 483, 10.1089/dna.1.1986.5.483
Fakas, 2011, Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast, J. Biol. Chem., 286, 29074, 10.1074/jbc.M111.258798
Feyder, 2015, Membrane trafficking in the yeast Saccharomyces cerevisiae model, Int. J. Mol. Sci., 0067, 1509, 10.3390/ijms16011509
Fitzgerald, 2014, Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting, Microb. Cell Factories, 13, 125, 10.1186/s12934-014-0125-0
Gasteiger, 2003, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res., 31, 3784, 10.1093/nar/gkg563
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Guerfal, 2013, Enhanced membrane protein expression by engineering increased intracellular membrane production, Microb. Cell Factories, 12, 122, 10.1186/1475-2859-12-122
Hashimoto, 1998, Effects of signal sequences on the secretion of hen lysozyme by yeast: construction of four secretion cassette vectors, Protein Eng., 11, 75, 10.1093/protein/11.2.75
Haun, 2008, Quantifying nanoparticle adhesion mediated by specific molecular interactions, Langmuir, 24, 8821, 10.1021/la8005844
Hegde, 2006, The surprising complexity of signal sequences, Trends Biochem. Sci., 31, 563, 10.1016/j.tibs.2006.08.004
Hou, 2012, Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae, FEMS Yeast Res., 12, 491, 10.1111/j.1567-1364.2012.00810.x
Huang, 2015, Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast, Proc. Natl. Acad. Sci., 112, E4689, 10.1073/pnas.1506460112
Huang, 2017, Efficient protein production by yeast requires global tuning of metabolism, Nat. Commun., 8, 10.1038/s41467-017-00999-2
Huang, 2018
Hwang, 2018, Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways, Trends Biochem. Sci., 43, 593, 10.1016/j.tibs.2018.06.005
Idiris, 2010, Engineering of protein secretion in yeast: strategies and impact on protein production, Appl. Microbiol. Biotechnol., 86, 403, 10.1007/s00253-010-2447-0
Klein, 2014, Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe - a quantitative approach using13C-based metabolic flux analysis, Metab. Eng., 21, 34, 10.1016/j.ymben.2013.11.001
Kozak, 1981, Possible role of flanking nucleotides in recognition of the aug initiator codon by eukaryotic ribosomes, Nucleic Acids Res., 9, 5233, 10.1093/nar/9.20.5233
Kurjan, 1982, Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor, Cell, 30, 933, 10.1016/0092-8674(82)90298-7
Leber, 2014
Lee, 2015, A highly characterized yeast Toolkit for modular, multipart assembly, ACS Synth. Biol., 4, 975, 10.1021/sb500366v
Liu, 2012, Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae, Biotechnol. Bioeng., 109, 1259, 10.1002/bit.24409
Loya, 2008, The 3’-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein, RNA, 14, 1352, 10.1261/rna.867208
Mandon, 2013, Protein translocation across the rough endoplasmic reticulum, Cold Spring Harb. Perspect. Biol., 5, 303, 10.1101/cshperspect.a013342
Matlack, 1999, BIP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane [2], Cell, 97, 553, 10.1016/S0092-8674(00)80767-9
Mehnert, 2014, Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane, Nat. Cell Biol., 16, 77, 10.1038/ncb2882
Melero, 2018, Lysophospholipids facilitate COPII Vesicle Formation, Curr. Biol., 28, 1950, 10.1016/j.cub.2018.04.076
Mikkelsen, 2012, Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform, Metab. Eng., 14, 104, 10.1016/j.ymben.2012.01.006
Morse, 2017, Yeast terminator function can be modulated and designed based on predictions of nucleosome occupancy, ACS Synth. Biol., 7b00138
Nagel, 2018
Ng, 1996, Signal sequences specify the targeting route to the endoplasmic reticulum membrane, J. Cell Biol., 134, 269, 10.1083/jcb.134.2.269
Nyathi, 2013, Co-translational targeting and translocation of proteins to the endoplasmic reticulum, Biochim. Biophys. Acta Mol. Cell Res., 1833, 2392, 10.1016/j.bbamcr.2013.02.021
Otte, 2004, Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles, Nat. Cell Biol., 6, 1189, 10.1038/ncb1195
Parekh, 1995, Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of saccharomyces cerevisiae, Protein Expr. Purif., 6, 537, 10.1006/prep.1995.1071
Payne, 2008, Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae, FEBS Lett., 582, 503, 10.1016/j.febslet.2008.01.009
Pechmann, 2014, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo, Nat. Struct. Mol. Biol., 21, 1100, 10.1038/nsmb.2919
Presnyak, 2015, Codon optimality is a major determinant of mRNA stability, Cell, 160, 1111, 10.1016/j.cell.2015.02.029
Rakestraw, 2009, Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae, Biotechnol. Bioeng., 103, 1192, 10.1002/bit.22338
Rapoport, 2017, Structural and mechanistic insights into protein translocation, Annu. Rev. Cell Dev. Biol., 33, 369, 10.1146/annurev-cellbio-100616-060439
Robinson, 1994, Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae, Bio Technology, 12, 381, 10.1038/nbt0494-381
Sambrook, 2012
Santos-Rosa, 2005, The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth, EMBO J., 24, 1931, 10.1038/sj.emboj.7600672
Schmidt, 2004, Recombinant expression systems in the pharmaceutical industry, Appl. Microbiol. Biotechnol., 65, 363, 10.1007/s00253-004-1656-9
Schuck, 2009, Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response, J. Cell Biol., 187, 525, 10.1083/jcb.200907074
Sheng, 2017, Systematic optimization of protein secretory pathways in Saccharomyces cerevisiae to increase expression of hepatitis B Small Antigen, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.00875
Shusta, 1998, Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibodies, Nat. Biotechnol., 16, 733, 10.1038/nbt0898-773
Smith, 2002, Overexpression of an archaeal protein in Yeast : secretion bottleneck at the ER, Biotechnol. Bioeng., 79, 713, 10.1002/bit.10367
Srikrishnan, 2013, Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast, Biotechnol. Bioeng., 110, 275, 10.1002/bit.24609
Strahsburger, 2017, In vivo assay to identify bacteria with β-glucosidase activity, Electron. J. Biotechnol., 30, 83, 10.1016/j.ejbt.2017.08.010
Tang, 2015, Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae, Biotechnol. Bioeng., 9999
Travers, 2000, Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation, Cell, 101, 249, 10.1016/S0092-8674(00)80835-1
Tsai, 2009, Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production, Appl. Environ. Microbiol., 75, 6087, 10.1128/AEM.01538-09
Tsai, 2010, Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production, Appl. Environ. Microbiol., 76, 7514, 10.1128/AEM.01777-10
Tukey, 1949, Comparing individual means in the analysis of variance, Biometrics, 5, 99, 10.2307/3001913
Tyo, 2012, Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress, BMC Biol., 10, 16, 10.1186/1741-7007-10-16
Valkonen, 2003, Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae, Appl. Environ. Microbiol., 69, 2065, 10.1128/AEM.69.4.2065-2072.2003
Wang, 2001, Characterization of a Saccharomyces cerevisiae mutant with oversecretion phenotype, Appl. Microbiol. Biotechnol., 55, 712, 10.1007/s002530100594
Wang, 2013, Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion, BMC Biotechnol., 13, 71, 10.1186/1472-6750-13-71
Wu, 2018, Mechanistic insights into ER-associated protein degradation, Curr. Opin. Cell Biol., 53, 22, 10.1016/j.ceb.2018.04.004
Yamanishi, 2013, A genome-wide activity assessment of terminator regions in saccharomyces cerevisiae provides a ‘terminatome’ toolbox, ACS Synth. Biol., 2, 337, 10.1021/sb300116y
Young, 2014, Protein folding and secretion: mechanistic insights advancing recombinant protein production in S. cerevisiae, Curr. Opin. Biotechnol., 30, 168, 10.1016/j.copbio.2014.06.018