Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase
Tài liệu tham khảo
Ajikumar, 2008, Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms, Mol. Pharm., 5, 167, 10.1021/mp700151b
Barrero, 1993, Synthesis of Ambrox® from (−)-sclareol and (+)-cis-abienol, Tetrahedron, 49, 10405, 10.1016/S0040-4020(01)80567-6
Barton, 1994, An efficient synthesis of (−)-dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan from (−)-sclareol, Tetrahedron Lett., 35, 5801, 10.1016/S0040-4039(00)78188-3
Bringi, V., Kadkade, P.G., Prince, C.L., Schubmehl, Barry F., Kane, Eugene J., Roach, B., 1993. Enhanced production of taxol and taxanes by cell cultures of taxus species. Phyton Catalytic, Inc., WO 1993/017121 A1.
Caniard, 2012, Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture, BMC Plant Biol., 12, 119, 10.1186/1471-2229-12-119
Criswell, 2012, A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase, Org. Lett., 14, 5828, 10.1021/ol3026022
Dai, 2012, Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae, Biotechnol. Bioeng., 109, 2845, 10.1002/bit.24547
Daum, 1998, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 14, 1471, 10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y
Dewick, 2009
Dong, 2013, Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization, Metab. Eng., 20, 198, 10.1016/j.ymben.2013.09.002
Dulaney, 1954, Studies on ergosterol production by yeasts, Appl. Microbiol., 2, 371, 10.1128/AEM.2.6.371-379.1954
Engels, 2008, Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production, Metab. Eng., 10, 201, 10.1016/j.ymben.2008.03.001
Falara, 2010, A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes, Plant Physiol., 154, 301, 10.1104/pp.110.159566
Farhi, 2011, Harnessing yeast subcellular compartments for the production of plant terpenoids, Metab. Eng., 13, 474, 10.1016/j.ymben.2011.05.001
Faulkner, 1999, The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae, J. Biol. Chem., 274, 14831, 10.1074/jbc.274.21.14831
Fischer, 2011, Metabolic engineering of monoterpene synthesis in yeast, Biotechnol. Bioeng., 108, 1883, 10.1002/bit.23129
Gibson, F.S., 1999. Synthesis of paclitaxel baccatin iii by protecting the 7-hydroxyl using a strong base and an electrophile. Bristol-Myers Squibb Company, WO 1999/045001 A1.
Goldspiel, 1997, Clinical overview of the taxanes, Pharmacotherapy, 17, 110S
Goodman, 1960, Studies on the biosynthesis of cholesterol. XII. Synthesis of allyl pyrophosphates from mevalonate and their conversion into squalene with liver enzymes, J. Lipid Res., 1, 286, 10.1016/S0022-2275(20)39050-7
Gunnewich, 2013, A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate, Phytochemistry, 91, 93, 10.1016/j.phytochem.2012.07.019
Ignea, 2011, Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids, Microb. Cell Fact., 10, 4, 10.1186/1475-2859-10-4
Ignea, 2014, Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase, ACS Synth. Biol., 3, 298, 10.1021/sb400115e
Ignea, 2012, Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae, Microb. Cell Fact., 11, 162, 10.1186/1475-2859-11-162
Kampranis, 2007, Rational conversion of substrate and product specificity in a salvia monoterpene synthase: structural insights into the evolution of terpene synthase function, Plant Cell, 19, 1994, 10.1105/tpc.106.047779
Kampranis, 2012, Developing a yeast cell factory for the production of terpenoids, Comput. Struct. Biotechnol. J., 3, e201210006, 10.5936/csbj.201210006
Kirby, 2009, Biosynthesis of plant isoprenoids: perspectives for microbial engineering, Annu. Rev. Plant Biol., 60, 335, 10.1146/annurev.arplant.043008.091955
Krivoruchko, 2011, Opportunities for yeast metabolic engineering: lessons from synthetic biology, Biotechnol. J., 6, 262, 10.1002/biot.201000308
Lai, 2009, Reconstruction of the archaeal isoprenoid ether lipid biosynthesis pathway in Escherichia coli through digeranylgeranylglyceryl phosphate, Metab. Eng., 11, 184, 10.1016/j.ymben.2009.01.008
Lee, 2005, Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity, Metab. Eng., 7, 18, 10.1016/j.ymben.2004.05.003
Martin, 2004, Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily, Plant Physiol., 135, 1908, 10.1104/pp.104.042028
McGarvey, 1995, Terpenoid metabolism, Plant Cell, 7, 1015
Mora-Pale, 2014, Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential, Curr. Opin. Biotechnol., 25, 86, 10.1016/j.copbio.2013.09.009
Muramatsu, 2009, Alkaline pH enhances farnesol production by Saccharomyces cerevisiae, J. Biosci. Bioeng., 108, 52, 10.1016/j.jbiosc.2009.02.012
Ohloff, 1982, The fragrance of ambergris
Ohnuma, 1996, Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis, J. Biol. Chem., 271, 10087, 10.1074/jbc.271.17.10087
Ohto, 2010, Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 87, 1327, 10.1007/s00253-010-2571-x
Ozaydin, 2012, Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production, Metab. Eng., 15, 174, 10.1016/j.ymben.2012.07.010
Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051
Pateraki, 2008, Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase, Phytochemistry, 69, 1641, 10.1016/j.phytochem.2008.02.005
Peplow, 2013, Malaria drug made in yeast causes market ferment, Nature, 494, 160, 10.1038/494160a
Peralta-Yahya, 2012, Identification and microbial production of a terpene-based advanced biofuel, Nat. Commun., 2, 483, 10.1038/ncomms1494
Phillips, 1999, Resin-based defenses in conifers, Trends Plant Sci., 4, 184, 10.1016/S1360-1385(99)01401-6
Renault, 2014, Cytochrome P450-mediated metabolic engineering: current progress and future challenges, Curr. Opin. Plant Biol., 19C, 27, 10.1016/j.pbi.2014.03.004
Ro, 2005, Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase, Proc. Natl. Acad. Sci. USA, 102, 8060, 10.1073/pnas.0500825102
Ro, 2006, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature., 440, 940, 10.1038/nature04640
Sallaud, 2012, Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes, Plant J., 72, 1, 10.1111/j.1365-313X.2012.05068.x
Schalk, 2012, Toward a biosynthetic route to sclareol and amber odorants, J. Am. Chem. Soc., 134, 18900, 10.1021/ja307404u
Schiff, 1979, Promotion of microtubule assembly in vitro by taxol, Nature, 277, 665, 10.1038/277665a0
Scott, 2001
Tarshis, 1996, Regulation of product chain length by isoprenyl diphosphate synthases, Proc. Natl. Acad. Sci. USA, 93, 15018, 10.1073/pnas.93.26.15018
Tarshis, 1994, Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution, Biochemistry., 33, 10871, 10.1021/bi00202a004
Tokuhiro, 2009, Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae, Appl. Environ. Microbiol., 75, 5536, 10.1128/AEM.00277-09
Ukibe, 2009, Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance, Appl. Environ. Microbiol., 75, 7205, 10.1128/AEM.01249-09
Verdoes, 2003, Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma), Appl. Environ. Microbiol., 69, 3728, 10.1128/AEM.69.7.3728-3738.2003
Verwaal, 2007, High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous, Appl. Environ. Microbiol., 73, 4342, 10.1128/AEM.02759-06
Wang, 1999, Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution, Trends Biochem. Sci., 24, 445, 10.1016/S0968-0004(99)01464-4
Westfall, 2012, Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin, Proc. Natl. Acad. Sci. USA, 109, E111, 10.1073/pnas.1110740109
Xu, 2013, Engineering plant metabolism into microbes: from systems biology to synthetic biology, Curr. Opin. Biotechnol., 24, 291, 10.1016/j.copbio.2012.08.010
Zhou, 2012, Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production, J. Am. Chem. Soc., 134, 3234, 10.1021/ja2114486