Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene
Tài liệu tham khảo
Agarwal, 2001, Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties, J. Med. Food, 4, 9, 10.1089/10966200152053668
Ajikumar, 2010, Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli, Science, 330, 70, 10.1126/science.1191652
Budin, 2018, Viscous control of cellular respiration by membrane lipid composition, Science, 10.1126/science.aat7925
Chen, 2013, Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism, Metab. Eng., 15, 48, 10.1016/j.ymben.2012.11.002
Chen, 2016, Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering, Microb. Cell Fact., 15, 113, 10.1186/s12934-016-0509-4
Czabany, 2008, Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae, J. Biol. Chem., 283, 17065, 10.1074/jbc.M800401200
Ding, 2014, Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy, PLoS One, 9, e109348, 10.1371/journal.pone.0109348
Donald, 1997, Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 63, 3341, 10.1128/AEM.63.9.3341-3344.1997
Fabrizio, 2010, Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation, PLoS Genet., 6, 60, 10.1371/journal.pgen.1001024
Fei, 2008, Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast, J. Cell Biol., 180, 473, 10.1083/jcb.200711136
Ferreira, 2018, Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols, Metab. Eng. Commun., 6, 22, 10.1016/j.meteno.2018.01.002
Gao, 2017, Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production, Metab. Eng., 41, 192, 10.1016/j.ymben.2017.04.004
Gibson, 2011, Enzymatic assembly of overlapping DNA fragments, Methods Enzymol., 498, 349, 10.1016/B978-0-12-385120-8.00015-2
Gibson, 2008, One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome, Proc. Natl. Acad. Sci. USA, 105, 20404, 10.1073/pnas.0811011106
Gietz, 2007, Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc., 2, 38, 10.1038/nprot.2007.15
Giovannucci, 1995, Intake of carotenoids and retinol in relation to risk of prostate cancer, J. Natl. Cancer Inst., 87, 1767, 10.1093/jnci/87.23.1767
Katz, 1995, Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil, Plant Physiol., 108, 1657, 10.1104/pp.108.4.1657
Klein-Marcuschamer, 2007, Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene, Trends Biotechnol., 25, 417, 10.1016/j.tibtech.2007.07.006
Larroude, 2017, A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene, Biotechnol. Bioeng., 115, 464, 10.1002/bit.26473
Li, 2017, In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy, Bioresour. Technol., 244, 1439, 10.1016/j.biortech.2017.04.116
Mantzouridou, 2008, Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess, Trends Food Sci. Technol., 19, 363, 10.1016/j.tifs.2008.01.003
Martinez, 2009, Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol. Rev., 33, 430, 10.1111/j.1574-6976.2008.00157.x
Matsuda, 2013, Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance, Microb. Cell Fact., 12, 1, 10.1186/1475-2859-12-119
Meadows, 2016, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature, 537, 694, 10.1038/nature19769
Nevoigt, 2008, Progress in metabolic engineering of Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 72, 379, 10.1128/MMBR.00025-07
Nikaido, 1985, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev., 49, 1, 10.1128/MMBR.49.1.1-32.1985
Oludotun, 2011, The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets, J. Cell Biol., 192, 1043, 10.1083/jcb.201010111
Outten, 2003, A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae, EMBO J., 22, 2015, 10.1093/emboj/cdg211
Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051
Pronk, 1996, Pyruvate metabolism in Saccharomyces cerevisiae, Yeast, 12, 1607, 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
Rissanen, 2002, Lycopene, atherosclerosis, and coronary heart disease, Exp. Biol. Med., 227, 900, 10.1177/153537020222701010
Shi, 2014, Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of acc1, mBio, 5, 10.1128/mBio.01130-14
Shiba, 2007, Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids, Metab. Eng., 9, 160, 10.1016/j.ymben.2006.10.005
Sorger, 2002, Synthesis of triacylglycerols by the acyl-coenzyme A: diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae, J. Bacteriol., 184, 519, 10.1128/JB.184.2.519-524.2002
Sorger, 2003, Triacylglycerol biosynthesis in yeast, Appl. Microbiol. Biot., 61, 289, 10.1007/s00253-002-1212-4
Stukeys, 1990, The OLEl gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene, J. Biol. Chem., 265, 20144, 10.1016/S0021-9258(17)30481-7
Sun, 2016, Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids, Process Biochem., 51, 568, 10.1016/j.procbio.2016.02.004
Tan, 2016, Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria, Metab. Eng., 39, 228, 10.1016/j.ymben.2016.12.006
Tereshina, 2010, Lipid composition of the mucoraceous fungus Blakeslea trispora under lycopene formation-stimulating conditions, Microbiology, 79, 34, 10.1134/S0026261710010054
Trikka, 2015, Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production, Microb. Cell Fact., 14, 60, 10.1186/s12934-015-0246-0
Verwaal, 2010, Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response, Yeast, 27, 983, 10.1002/yea.1807
Walsh, 2000, Molecular mechanisms that confer antibacterial drug resistance, Nature, 406, 775, 10.1038/35021219
Wayama, 2013, Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis, PLoS One, 8, e53618, 10.1371/journal.pone.0053618
Wolinski, 2011, A role for seipin in lipid droplet dynamics and inheritance in yeast, J. Cell Sci., 124, 3894, 10.1242/jcs.091454
Xie, 2014, Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae, Biotechnol. Bioeng., 111, 125, 10.1002/bit.25002
Xie, 2015, Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae, Metab. Eng., 28, 8, 10.1016/j.ymben.2014.11.007
Zhou, 2015, Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt, Appl. Microbiol. Biot., 99, 8419, 10.1007/s00253-015-6791-y
Zhou, 2016, Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories, Nat. Commun., 7, 11709, 10.1038/ncomms11709
Zhu, 2015, Targeted engineering and scale up of lycopene overproduction in Escherichia coli, Process Biochem., 50, 341, 10.1016/j.procbio.2014.12.008
Zhu, 2015, Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides, Eukaryot. Cell, 14, 252, 10.1128/EC.00141-14