Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose

Elsevier BV - Tập 260 - Trang 302-310 - 2018
Elvira Sgobba1, Anna K. Stumpf2, Marina Vortmann3, Nina Jagmann2, Martin Krehenbrink4, Mareike E. Dirks-Hofmeister5, Bruno Moerschbacher3, Bodo Philipp2, Volker F. Wendisch1
1Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
2Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Germany
3Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Münster, Germany
4Cysal GmbH, Münster, Germany
5WeissBioTech GmbH, Ascheberg, Germany

Tài liệu tham khảo

Becker, 2011, From zero to hero–design-based systems metabolic engineering of for L-lysine production, Metab. Eng., 13, 159, 10.1016/j.ymben.2011.01.003 Blombach, 2011, Corynebacterium glutamicum tailored for efficient isobutanol production, Appl. Environ. Microbiol., 77, 3300, 10.1128/AEM.02972-10 Brenner, 2008, Engineering microbial consortia: a new frontier in synthetic biology, Trends Biotechnol., 26, 10.1016/j.tibtech.2008.05.004 Camacho-Zaragoza, 2016, Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol, Microb. Cell Fact., 15, 163, 10.1186/s12934-016-0562-z Datsenko, 2000, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U.S.A., 97, 6640, 10.1073/pnas.120163297 Eggeling, 2005, Experiments, 3535 Engels, 2008, ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum, FEMS Microbiol. Lett., 289, 80, 10.1111/j.1574-6968.2008.01370.x Georgi, 2005, Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase, Metab. Eng., 7, 291, 10.1016/j.ymben.2005.05.001 Gouesbet, 1994, Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP, Microbiology, 140, 2415, 10.1099/13500872-140-9-2415 Grant, 1990, Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants, Proc. Natl. Acad. Sci. U.S.A., 87, 4645, 10.1073/pnas.87.12.4645 Hamer, 2015, Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases, Sci. Rep., 5, 8716, 10.1038/srep08716 Hays, 2015, Better together: engineering and application of microbial symbioses, Curr. Opin. Biotechnol., 36, 40, 10.1016/j.copbio.2015.08.008 Ikawa, 1998, Hyperexpression of the gene for a bacillus α-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme, Biosci. Biotechnol. Biochem., 62, 1720, 10.1271/bbb.62.1720 Jahreis, 2002, Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132, J. Bacteriol., 184, 5307, 10.1128/JB.184.19.5307-5316.2002 Jiang, 2017, Advances in industrial microbiome based on microbial consortium for biorefinery, Bioresour. Bioprocess., 4, 11, 10.1186/s40643-017-0141-0 Jorge, 2017, A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources, Bioresour. Technol., 245, 1701, 10.1016/j.biortech.2017.04.108 Kamm, 2016, Green biorefinery – industrial implementation, Food Chem., 197, 1341, 10.1016/j.foodchem.2015.11.088 Kind, 2011, Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum, Metab. Eng., 13, 617, 10.1016/j.ymben.2011.07.006 Kirchner, 2003, Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum, J. Biotechnol., 104, 287, 10.1016/S0168-1656(03)00148-2 Kondo, 2002, High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase, Appl. Microbiol. Biotechnol., 58, 291, 10.1007/s00253-001-0900-9 Li, 2017, Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform, Biotechnol. Biofuels, 10, 55, 10.1186/s13068-017-0736-x Mimitsuka, 2007, Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation, Biosci. Biotechnol. Biochem., 71, 2130, 10.1271/bbb.60699 Minty, 2013, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Natl. Acad. Sci. U.S.A., 110, 14592, 10.1073/pnas.1218447110 Mitsuhashi, 2014, Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides, Curr. Opin. Biotechnol., 26, 38, 10.1016/j.copbio.2013.08.020 Moon, 2005, Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032, FEMS Microbiol. Lett., 244, 259, 10.1016/j.femsle.2005.01.053 Nærdal, 2015, Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains, Microb. Biotechnol., 8, 342, 10.1111/1751-7915.12257 Nguyen, 2015, Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum, J. Biotechnol., 201, 75, 10.1016/j.jbiotec.2014.10.035 Okamoto, 2015, Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate, J. Biosci. Bioeng., 119, 548, 10.1016/j.jbiosc.2014.10.021 Park, 2012, One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae, Biotechnol. Biofuels, 5, 64, 10.1186/1754-6834-5-64 Perez-Garcia, 2017, Fermentative production of l-pipecolic acid from glucose and alternative carbon sources, Biotechnol. J., 12, 10.1002/biot.201600646 Pérez-García, 2016, Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid, Appl. Microbiol. Biotechnol., 100, 8075, 10.1007/s00253-016-7682-6 Peters-Wendisch, 2001, Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum, J. Mol. Microbiol. Biotechnol., 3, 295 Qian, 2011, Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine, Biotechnol. Bioeng., 108, 93, 10.1002/bit.22918 Qu, 2012, Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control, Bioresour. Technol., 106, 89, 10.1016/j.biortech.2011.11.045 Sabri, 2013, Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain, Appl. Environ. Microbiol., 79, 478, 10.1128/AEM.02544-12 Sambrook, 2001 Schneider, 2010, Putrescine production by engineered Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 88, 859, 10.1007/s00253-010-2778-x Seibold, 2006, Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production, J. Biotechnol., 124, 381, 10.1016/j.jbiotec.2005.12.027 Song, 2014, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev., 43, 6954, 10.1039/C4CS00114A Stansen, 2005, Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production, Appl. Environ. Microbiol., 71, 5920, 10.1128/AEM.71.10.5920-5928.2005 Tateno, 2009, Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase, Appl. Microbiol. Biotechnol., 82, 115, 10.1007/s00253-008-1751-4 Tsuge, 2013, Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions, AMB Express, 3, 10.1186/2191-0855-3-72 Uhde, 2013, Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 97, 1679, 10.1007/s00253-012-4313-8 Vartoukian, 2010, Strategies for culture of ‘unculturable’ bacteria, FEMS Microbiol. Lett., 309, 1 Veit, 2009, Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum, J. Biotechnol., 140, 75, 10.1016/j.jbiotec.2008.12.014 Vrljic, 1996, A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum, Mol. Microbiol., 22, 815, 10.1046/j.1365-2958.1996.01527.x Wang, 2016, Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation, Microb. Cell Fact., 15, 21, 10.1186/s12934-016-0418-6 Wendisch, 2016, Updates on industrial production of amino acids using Corynebacterium glutamicum, World J. Microbiol. Biotechnol., 32, 105, 10.1007/s11274-016-2060-1 Zhou, 2015, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol., 33, 377, 10.1038/nbt.3095