Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

Metabolic Engineering - Tập 38 - Trang 494-503 - 2016
James Kirby1,2, Kevin L. Dietzel3, Gale Wichmann3, Rossana Chan1,2, Eugene Antipov3, Nathan Moss3, Edward E.K. Baidoo2, Peter Jackson3, Sara P. Gaucher3, Shayin Gottlieb3, Jeremy LaBarge3, Tina Mahatdejkul3, Kristy M. Hawkins3, Sheela Muley3, Jack D. Newman3, Pinghua Liu4, Jay D. Keasling1,2,5,6,7, Lishan Zhao3
1California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94702, USA
2Joint BioEnergy Institute, Emeryville, CA 94608, USA
3Amyris, Inc., 5885 Hollis Street, Suite 100, Emeryville, CA 94608, USA
4Department of Chemistry, Boston University, Boston, MA 02215 USA
5Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA 94702, USA
6Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94702, USA
7Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970 Hørsholm, Denmark

Tài liệu tham khảo

Artsatbanov, 2012, Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria, Biochem. Biokhimiia, 77, 362, 10.1134/S0006297912040074 Baidoo, 2014, Metabolite profiling of plastidial deoxyxylulose-5-phosphate pathway intermediates by liquid chromatography and mass spectrometry, Methods Mol. Biol., 1153, 57, 10.1007/978-1-4939-0606-2_5 Begley, 2008, Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection, Infect. Immun., 76, 5392, 10.1128/IAI.01376-07 Benisch, 2014, The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase, J. Biotechnol., 171, 45, 10.1016/j.jbiotec.2013.11.025 Boucher, 2000, The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways, Mol. Microbiol., 37, 703, 10.1046/j.1365-2958.2000.02004.x Cardona, 2011, The Saccharomyces cerevisiae flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism, Arch. Microbiol., 193, 515, 10.1007/s00203-011-0696-7 Carlsen, 2013, Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 97, 5753, 10.1007/s00253-013-4877-y Christianson, 1992, Multifunctional yeast high-copy-number shuttle vectors, Gene, 110, 119, 10.1016/0378-1119(92)90454-W Crack, 2009, Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD, Biochemistry, 48, 12252, 10.1021/bi901498v Dellas, 2013, Discovery of a metabolic alternative to the classical mevalonate pathway, eLife, 2, e00672, 10.7554/eLife.00672 Eisenreich, 2004, Biosynthesis of isoprenoids via the non-mevalonate pathway, Cell. Mol. life Sci.: CMLS, 61, 1401, 10.1007/s00018-004-3381-z Grawert, 2004, IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis, J. Am. Chem. Soc., 126, 12847, 10.1021/ja0471727 Gruchattka, 2013, In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories, Micro. Cell Fact., 12 Kirby, 2009, Biosynthesis of plant isoprenoids: perspectives for microbial engineering, Annu. Rev. Plant Biol., 60, 335, 10.1146/annurev.arplant.043008.091955 Kirby, 2008, Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua, FEBS J., 275, 1852, 10.1111/j.1742-4658.2008.06343.x Kollas, 2002, Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, FEBS Lett., 532, 432, 10.1016/S0014-5793(02)03725-0 Lange, 2000, Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes, Proc. Natl. Acad. Sci. USA, 97, 13172, 10.1073/pnas.240454797 Li, 2010, Biofuels: biomolecular engineering fundamentals and advances, Annu. Rev. Chem. Biomol. Eng., 1, 19, 10.1146/annurev-chembioeng-073009-100938 Lill, 2009, Function and biogenesis of iron-sulphur proteins, Nature, 460, 831, 10.1038/nature08301 Lill, 2015, The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins, Eur. J. Cell Biol., 94, 280, 10.1016/j.ejcb.2015.05.002 Lill, 2008, Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases, Annu. Rev. Biochem., 77, 669, 10.1146/annurev.biochem.76.052705.162653 Loiseau, 2007, ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA, 104, 13626, 10.1073/pnas.0705829104 Lu, 2003, Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain, Biochemistry, 42, 3742, 10.1021/bi0269198 Macbeth, 2007, Large-scale overexpression and purification of ADARs from Saccharomyces cerevisiae for biophysical and biochemical studies, Methods Enzymol., 424, 319, 10.1016/S0076-6879(07)24015-7 Martin, 2003, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat. Biotechnol., 21, 796, 10.1038/nbt833 Maury, 2008, Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae, FEBS Lett., 582, 4032, 10.1016/j.febslet.2008.10.045 Okada, 2005, Cyanobacterial non-mevalonate pathway: (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus BP-1, J. Biol. Chem., 280, 20672, 10.1074/jbc.M500865200 Partow, 2012, Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae, PLoS One, 7, e52498, 10.1371/journal.pone.0052498 Paul, 2014, SnapShot: eukaryotic Fe-S protein biogenesis, Cell Metab., 20, 10.1016/j.cmet.2014.07.010 Perez-Gil, 2013, Metabolic plasticity for isoprenoid biosynthesis in bacteria, Biochem. J., 452, 19, 10.1042/BJ20121899 Pierik, 2009, Analysis of iron-sulfur protein maturation in eukaryotes, Nat. Protoc., 4, 753, 10.1038/nprot.2009.39 Puan, 2005, fldA is an essential gene required in the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis, FEBS Lett., 579, 3802, 10.1016/j.febslet.2005.05.047 Rivasseau, 2009, Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis, Plant Cell Environ., 32, 82, 10.1111/j.1365-3040.2008.01903.x Roche, 2013, Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity, Biochim. Biophys. Acta, 1827, 455, 10.1016/j.bbabio.2012.12.010 Schmidt, 2007, The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat. Protoc., 2, 1528, 10.1038/nprot.2007.209 Seemann, 2006, Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG, FEBS Lett., 580, 1547, 10.1016/j.febslet.2006.01.082 Tanaka, 2016, Novel features of the ISC machinery revealed by characterization of Escherichia coli mutants that survive without iron-sulfur clusters, Mol. Microbiol., 99, 835, 10.1111/mmi.13271 Tippmann, 2013, From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae, Biotechnol. J., 8, 1435, 10.1002/biot.201300028 Tokumoto, 2001, Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins, J. Biochem., 130, 63, 10.1093/oxfordjournals.jbchem.a002963 Walley, 2015, Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum, Proc. Natl. Acad. Sci. USA, 112, 6212, 10.1073/pnas.1504828112 Wu, 2006, Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants, Nat. Biotechnol., 24, 1441, 10.1038/nbt1251 Xiao, 2009, IspG enzyme activity in the deoxyxylulose phosphate pathway: roles of the iron-sulfur cluster, Biochemistry, 48, 10483, 10.1021/bi901519q Xiao, 2009, Revisiting the IspH catalytic system in the deoxyxylulose phosphate pathway: achieving high activity, J. Am. Chem. Soc., 131, 9931, 10.1021/ja903778d Zepeck, 2005, Biosynthesis of isoprenoids. purification and properties of IspG protein from Escherichia coli, J. Org. Chem., 70, 9168, 10.1021/jo0510787 Zhao, 2013, Methylerythritol phosphate pathway of isoprenoid biosynthesis, Annu. Rev. Biochem., 82, 497, 10.1146/annurev-biochem-052010-100934 Zhou, 2012, Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production, PLoS One, 7, e47513, 10.1371/journal.pone.0047513