Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae

Metabolic Engineering - Tập 55 - Trang 76-84 - 2019
Danielle A. Yee1, Anthony B. DeNicola2, John M. Billingsley1, Jenette G. Creso2, Vidya Subrahmanyam3, Yi Tang4,3
1Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
2Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United states
3Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
4Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States

Tài liệu tham khảo

Avalos, 2013, Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols, Nat. Biotechnol., 31, 335, 10.1038/nbt.2509 Bao, 2014, Homology-integrated CRISPR–Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k Billingsley, 2017, Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae, Metab. Eng., 44, 117, 10.1016/j.ymben.2017.09.006 Brachmann, 1998, Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR‐mediated gene disruption and other applications, Yeast, 14, 115, 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 Brown, 2015, De novo production of the plant-derived alkaloid strictosidine in yeast, Proc. Natl. Acad. Sci. Unit. States Am., 112, 3205, 10.1073/pnas.1423555112 Campbell, 2016, Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids, ACS Synth. Biol., 5, 405, 10.1021/acssynbio.5b00289 Chooi, 2010, Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum, Chem. Biol., 17, 483, 10.1016/j.chembiol.2010.03.015 Collu, 2001, Geraniol 10‐hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis, FEBS Lett., 508, 215, 10.1016/S0014-5793(01)03045-9 Cragg, 2018, Natural products as sources of anticancer agents: current approaches and perspectives, 309 De Luca, 1989, Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases, Proc. Natl. Acad. Sci. Unit. States Am., 86, 2582, 10.1073/pnas.86.8.2582 Denby, 2018, Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer, Nat. Commun., 9, 965, 10.1038/s41467-018-03293-x Dong, 2013, Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization, Metab. Eng., 20, 198, 10.1016/j.ymben.2013.09.002 Karl-Dieter, 2007, 25 yeast genetic strain and plasmid collections, Methods Microbiol., 36, 629, 10.1016/S0580-9517(06)36025-4 Fang, 2011, A vector set for systematic metabolic engineering in Saccharomyces cerevisiae, Yeast, 28, 123, 10.1002/yea.1824 Faulkner, 1999, The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae, J. Biol. Chem., 274, 14831, 10.1074/jbc.274.21.14831 Fischer, 2011, Metabolic engineering of monoterpene synthesis in yeast, Biotechnol. Bioeng., 108, 1883, 10.1002/bit.23129 Fischer, 2013, Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems, J. Biotechnol., 163, 24, 10.1016/j.jbiotec.2012.10.012 Galdieri, 2014, Protein acetylation and acetyl-CoA metabolism in budding yeast, Eukaryot. Cell, 10.1128/EC.00189-14 Geu-Flores, 2012, An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis, Nature, 492, 138, 10.1038/nature11692 Gietz, 2007, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc., 2, 31, 10.1038/nprot.2007.13 Golla, 2015, Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast, Chem. Res. Toxicol., 28, 1246, 10.1021/acs.chemrestox.5b00071 Gregg, 2009, Purification of mitochondria from yeast cells, J. Vis. Exp.: J. Vis. Exp., 30 Guirimand, 2009, Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase, Plant Cell Rep., 28, 1215, 10.1007/s00299-009-0722-2 Harvey, 2018, HEx: a heterologous expression platform for the discovery of fungal natural products, Sci. Adv., 4, 4, 10.1126/sciadv.aar5459 Höfer, 2013, Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco) iridoid pathway, Metab. Eng., 20, 221, 10.1016/j.ymben.2013.08.001 Horwitz, 2015, Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas, Cell. Syst., 1, 88, 10.1016/j.cels.2015.02.001 Ignea, 2014, Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase, ACS Synth. Biol., 3, 298, 10.1021/sb400115e Iijima, 2004, Characterization of geraniol synthase from the peltate glands of sweet basil, Plant Physiol., 134, 370, 10.1104/pp.103.032946 Irmler, 2000, Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase, Plant J., 24, 797, 10.1046/j.1365-313x.2000.00922.x Jakočiūnas, 2015, Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae, Metab. Eng., 28, 213, 10.1016/j.ymben.2015.01.008 Jiang, 2017, Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae, Metab. Eng., 41, 57, 10.1016/j.ymben.2017.03.005 Johnston, 1984, Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae, Mol. Cell. Biol., 4, 1440, 10.1128/MCB.4.8.1440 Kutchan, 1988, The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli, FEBS Lett., 237, 40, 10.1016/0014-5793(88)80167-4 Leonard, 2009, Opportunities in metabolic engineering to facilitate scalable alkaloid production, Nat. Chem. Biol., 5, 292, 10.1038/nchembio.160 Lichman, 2019, Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis, Nat. Chem. Biol., 15, 71, 10.1038/s41589-018-0185-2 Liu, 2013, Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae, J. Biotechnol., 168, 446, 10.1016/j.jbiotec.2013.10.017 Lv, 2016, Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae, Nat. Commun., 7, 12851, 10.1038/ncomms12851 Ma, 2010, Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae, BMC Genomics, 11, 660, 10.1186/1471-2164-11-660 Mantzouridou, 2010, Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6, FEMS Yeast Res., 10, 699, 10.1111/j.1567-1364.2010.00645.x Matheson, 2017, Whole-genome sequence and variant analysis of W303, a widely-used strain of Saccharomyces cerevisiae, g3 Mehrotra, 2018, Hairy root cultures for monoterpene indole alkaloid pathway: investigation and biotechnological production, 95 Miettinen, 2014, The seco-iridoid pathway from Catharanthus roseus, Nat. Commun., 5, 3606, 10.1038/ncomms4606 Murata, 2008, The leaf epidermome of Catharanthus roseus reveals its biochemical specialization, Plant Cell, 20, 524, 10.1105/tpc.107.056630 O'Connor, 2006, Chemistry and biology of monoterpene indole alkaloid biosynthesis, Nat. Prod. Rep., 23, 532, 10.1039/b512615k Oswald, 2007, Monoterpenoid biosynthesis in Saccharomyces cerevisiae, FEMS Yeast Res., 7, 413, 10.1111/j.1567-1364.2006.00172.x Scalcinati, 2012, Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode, Metab. Eng., 14, 91, 10.1016/j.ymben.2012.01.007 Shi, 2016, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng., 33, 19, 10.1016/j.ymben.2015.10.011 Steyer, 2013, Genetic analysis of geraniol metabolism during fermentation, Food Microbiol., 33, 228, 10.1016/j.fm.2012.09.021 Strucko, 2015, Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production, Metab. Eng. Commun., 2, 99, 10.1016/j.meteno.2015.09.001 Tokuhiro, 2009, Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae, Appl. Environ. Microbiol., 75, 5536, 10.1128/AEM.00277-09 Trotter, 2006, Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae, Appl. Environ. Microbiol., 72, 4885, 10.1128/AEM.00526-06 West, 1984, Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG, Mol. Cell. Biol., 4, 2467, 10.1128/MCB.4.11.2467 Yuan, 2016, Mitochondrial acetyl-CoA utilization pathway for terpenoid productions, Metab. Eng., 38, 303, 10.1016/j.ymben.2016.07.008 Zhao, 2016, Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 100, 4561, 10.1007/s00253-016-7375-1 Zhao, 2017, Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae, Microb. Cell Factories, 16, 17, 10.1186/s12934-017-0641-9