Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli

Microbial Cell Factories - Tập 12 - Trang 1-10 - 2013
Aymerick Eudes1,2, Darmawi Juminaga1,3, Edward E K Baidoo1, F William Collins4, Jay D Keasling1,2,3,5, Dominique Loqué1,2
1Joint BioEnergy Institute, Emeryville, USA
2Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
3California Institute for Quantitative Biosciences and the Synthetic Biology Institute at UC Berkeley, Berkeley, USA
4Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food, Ottawa, Canada
5Department of Bioengineering, Department of Chemical & Biomolecular Engineering, University of California, Berkeley, USA

Tóm tắt

Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllus enabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4′-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3′,4′-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (Rg TAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds.

Tài liệu tham khảo

Collins FW: Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem. 1989, 37: 60-66. 10.1021/jf00085a015. Collins FW, Mullin WJ: High-performance liquid chromatographic determination of avenanthramides, N-aroylanthranilic acid alkaloids from oats. J Chromatogr. 1988, 45: 363-370. Peterson DM, Burrup DE, Wesenberg DM, Erickson CA: Relationships among agronomic traits and grain composition in Oat genotypes grown in different environments. Crop Sci. 2005, 45: 1249-1255. 10.2135/cropsci2004.0063. 10.2135/cropsci2004.0063. Singh R, De S, Belkheir A: Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview. Crit Rev Food SciNut. 2013, 53: 126-144. 10.1080/10408398.2010.526725. Meydani M: Potential health benefits of avenanthramides of oats. Nutr Rev. 2009, 67: 731-735. 10.1111/j.1753-4887.2009.00256.x. Guo W, Kong E, Meydani M: Dietary polyphenols, inflammation, and cancer. Nutr Cancer. 2009, 61: 807-810. 10.1080/01635580903285098. Ji LL, Lay D, Chung E, Fu Y, Peterson DM: Effect of avenathramides on oxidant generation and antioxidant enzyme activity in exercised rats. Nutr Res. 2003, 23: 1579-1590. 10.1016/S0271-5317(03)00165-9. O’Moore KM, Vanlandschoot CM, Dickman JR, Figi AR, Rothert AM, Ji LL: Effect of avenanthramides on rat skeletal muscle injury induced by lengthening contraction. Med Sci Sports Exer. 2005, 37 (Suppl 5): 466- Ren Y, Yang X, Niu X, Liu S, Ren G: Chemical characterization of the avenanthramide-rich extract from oat and its effect on D-galactose-induced oxidative stress in mice. J Agric Food Chem. 2011, 59: 206-211. 10.1021/jf103938e. Liu L, Zubik L, Collins FW, Marko M, Meydani M: The antiatherogenic potential of oat phenolic compounds. Atherosclerosis. 2004, 175: 39-49. 10.1016/j.atherosclerosis.2004.01.044. Guo W, Wise ML, Collins FW, Meydani M: Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells. Free RadicBiol Med. 2008, 44: 415-429. 10.1016/j.freeradbiomed.2007.10.036. Lv N, Song MY, Lee YR, Choi HN, Kwon KB, Park JW, Park BH: Dihydroavenanthramide D protects pancreatic beta-cells from cytokine and streptozotocin toxicity. Biochem Biophys Res Commun. 2009, 387: 97-102. 10.1016/j.bbrc.2009.06.133. Lee YR, Noh EM, Oh HJ, Hur H, Kim JM, Han JH, Hwang JK, Park BH, Park JW, Youn HJ, Jung SH, Kim BS, Jung JY, Lee SH, Park CS, Kim JS: Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression. Biochem Biophys Res Commun. 2011, 405: 552-557. 10.1016/j.bbrc.2011.01.065. Sur R, Nigam A, Grote D, Liebel F, Southall MD: Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res. 2008, 300: 569-574. 10.1007/s00403-008-0858-x. Heuschkel S, Wohlrab J, Schmaus G, Neubert RH: Modulation of dihydroavenanthramide D release and skin penetration by 1, 2-alkanediols. Eur J Pharm Biopharm. 2008, 70: 239-247. 10.1016/j.ejpb.2008.04.005. Nie L, Wise ML, Peterson DM, Meydani M: Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis. 2006, 186: 260-266. 10.1016/j.atherosclerosis.2005.07.027. Nie L, Wise M, Peterson D, Meydani M: Mechanism by which avenanthramide-c, a polyphenol of oats, blocks cell cycle progression in vascular smooth muscle cells. Free Radic Biol Med. 2006, 41: 702-708. 10.1016/j.freeradbiomed.2006.04.020. Guo W, Nie L, Wu D, Wise ML, Collins FW, Meydani SN, Meydani M: Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer. 2010, 62: 1007-1016. 10.1080/01635581.2010.492090. Azuma H, Banno K, Yoshimura T: Pharmacological properties of N-(3′, 4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent. Br J Pharmacol. 1976, 58: 483-488. 10.1111/j.1476-5381.1976.tb08614.x. Isaji M, Miyata H, Ajisawa Y: Tranilast: a new application in the cardiovascular field as an antiproliferative drug. Cardiovasc Drug Rev. 1998, 16: 288-299. 10.1111/j.1527-3466.1998.tb00359.x. Suzawa H, Kikuchi S, Ichikawa K, Koda A: Inhibitory action of Tranilast, an anti-allergic drug, on the release of cytokines and PGE2 from human monocytes-macrophages. Jpn J Pharmacol. 1992, 60: 85-90. 10.1254/jjp.60.85. Crittenden DB, Pillinger MH: The year in gout - 2010–2011. Bull NYU Hosp Jt Dis. 2011, 69: 257-263. Inglis JJ, Criado G, Andrews M, Feldmann M, Williams RO, Selley ML: The anti-allergic drug, N-(3′, 4′-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology. 2007, 46: 1428-1432. 10.1093/rheumatology/kem160. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L: Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005, 310: 850-855. 10.1126/science.1117634. Rogosnitzky M, Danks R, Kardash E: Therapeutic Potential of Tranilast, an Anti-allergy Drug, in Proliferative Disorders. Anticancer Res. 2012, 32: 2471-2478. Zammit SC, Cox AJ, Gow RM, Zhang Y, Gilbert RE, Krum H, Kelly DJ, Williams SJ: Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates. Bioorg Med Chem Lett. 2009, 19: 7003-7006. 10.1016/j.bmcl.2009.09.120. Zhang Y, Edgley AJ, Cox AJ, Powell AK, Wang B, Kompa AR, Stapleton DI, Zammit SC, Williams SJ, Krum H, Gilbert RE, Kelly DJ: FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail. 2012, 14: 549-562. 10.1093/eurjhf/hfs011. Zhang Y, Elsik M, Edgley AJ, Cox AJ, Kompa AR, Wang B, Tan CY, Khong FL, Stapleton DI, Zammit S, Williams SJ, Gilbert RE, Krum H, Kelly DJ: A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int J Cardio. 2012, 10.1016/j.icard.2012.11.067. PMID:23219315 Tan SM, Zhang Y, Wang B, Tan CY, Zammit SC, Williams SJ, Krum H, Kelly DJ: An orally active anti-fibrotic compound, FT23, attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy. Clin Exp Pharmacol Physiol. 2012, 39: 650-656. 10.1111/j.1440-1681.2012.05726.x. Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, Krum H, Langham R, Kelly DJ: A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS One. 2012, 7: e47160- 10.1371/journal.pone.0047160. Keasling JD: Manufacturing molecules through metabolic engineering. Science. 2010, 330: 1355-1358. 10.1126/science.1193990. Pickens LB, Tang Y, Chooi YH: Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng. 2011, 2: 211-236. 10.1146/annurev-chembioeng-061010-114209. Williams SJ, Stapleton D, Zammit S, James D, Ernest R, Krum H: Therapeutic compounds. 2010, United States: Patent Application No. 2010/0130497 A1 Fielder DA, Redmond MJ, Cottrell IW: Avenanthramide-containing compositions. 2010, United States: Patent Application No. 2010/0267662 A1 Yang Q, Reinhard K, Schiltz E, Matern U: Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation Dianthus caryophyllus L. Plant Mol Biol. 1997, 35: 777-789. 10.1023/A:1005878622437. D’Auria J: Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol. 2006, 9: 331-340. 10.1016/j.pbi.2006.03.016. Hamberger B, Hahlbrock K: The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA. 2004, 101: 2209-2214. 10.1073/pnas.0307307101. Eudes A, Baidoo EE, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D: Production of tranilast [N-(3′, 4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2011, 89: 989-1000. 10.1007/s00253-010-2939-y. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G: Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm. 2008, 5: 167-190. 10.1021/mp700151b. Gosset G: Production of aromatic compounds in bacteria. Curr Opin Biotechnol. 2009, 20: 651-658. 10.1016/j.copbio.2009.09.012. Balderas-Hernández VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernández-Chávez G, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G: Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact. 2009, 8: 19- 10.1186/1475-2859-8-19. Yanofsky C, Horn V, Bonner M, Stasiowski S: Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia col. Genetics. 1971, 69: 409-433. Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS: Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng. 2007, 9: 142-151. 10.1016/j.ymben.2006.11.001. Qi WW, Vannelli T, Breinig S, Ben-Bassat A, Gatenby AA, Haynie SL, Sariaslani FS: Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng. 2007, 9: 268-276. 10.1016/j.ymben.2007.01.002. Juminaga D, Baidoo EE, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD: Modular engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol. 2012, 78: 89-98. 10.1128/AEM.06017-11. Lin Y, Yan Y: Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Fact. 2012, 11: 42- 10.1186/1475-2859-11-42. Berner M, Krug D, Bihlmaier C, Vente A, Müller R, Bechthold A: Genes and enzymes involved in caffeic acid biosynthesis in the actinomyceteSaccharothrix espanaensis. J Bacteriol. 2006, 188: 2666-2673. 10.1128/JB.188.7.2666-2673.2006. Rautengarten C, Baidoo E, Keasling JD, Scheller HV: A simple method for enzymatic synthesis of unlabeled and radiolabeled hydroxycinnamate-CoA. Bioenerg Res. 2010, 3: 115-122. 10.1007/s12155-010-9085-3. 10.1007/s12155-010-9085-3. Kang SY, Choi O, Lee JK, Hwang BY, Uhm TB, Hong YS: Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb Cell Fact. 2012, 11: 153- 10.1186/1475-2859-11-153. Zhang H, Stephanopoulos G: Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2012, 97: 3333- Choi O, Wu CZ, Kang SY, Ahn JS, Uhm TB, Hong YS: Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol. 2011, 38: 1657-1665. 10.1007/s10295-011-0954-3. Muñoz AJ, Hernández-Chávez G, De Anda R, Martínez A, Bolívar F, Gosset G: Metabolic engineering of Escherichia coli for improving L-3, 4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. J Ind Microbiol Biotechnol. 2011, 38: 1845-1852. 10.1007/s10295-011-0973-0. Lee J-Y, Xun L: Novel biological process for l-dopa production from l-tyrosine by p-hydroxyphenylacetate 3-hydroxylase. Biotechnol Lett. 1998, 20: 479-482. 10.1023/A:1005440229420. Noel JP, Louie GV, Bowman ME, Moore BS, Moffitt MC: Substrate switched ammonia lyases and mutases. 2009, United States: Patent Application No. 2009/0011400 A1 Fowler ZL, Gikandi WW, Koffas MAG: Increased malonylcoenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its Application to flavanone production. Appl Environ Microbiol. 2009, 75: 5831-5839. 10.1128/AEM.00270-09. Lee D, Douglas CJ: Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol. 1996, 112: 193-205. 10.1104/pp.112.1.193. Yun MS, Chen W, Deng F, Kiyokawa T, Mametsuka K, Yogo Y: An in vitro screening assay to discover novel inhibitors of 4-coumarate:CoA ligase. Pest Manag Sci. 2006, 62: 1065-1071. 10.1002/ps.1277. Santos CN, Xiao W, Stephanopoulos G: Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci USA. 2012, 109: 13538-13543. 10.1073/pnas.1206346109. Bernini R, Crisante F, Ginnasi MC: A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules. 2011, 16: 1418-1425. 10.3390/molecules16021418. Neidhardt FC, Bloch PL, Smith DF: Culture medium for enterobacteria. J Bacteriol. 1974, 119: 736-747. Lutz R, Bujard H: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997, 25: 1203-1210. 10.1093/nar/25.6.1203. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD: BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J BiolEng. 2011, 5: 12- Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD: BglBricks: a flexible standard for biological part assembly. J Biol Eng. 2010, 4: 1- 10.1186/1754-1611-4-1.