Molecular Nutrition and Food Research
1613-4133
1613-4125
Đức
Cơ quản chủ quản: WILEY , Wiley-VCH Verlag
Các bài báo tiêu biểu
Ochratoxin A (OTA) is a ubiquitous mycotoxin produced by fungi of improperly stored food products. OTA is nephrotoxic and is suspected of being the main etiological agent responsible for human Balkan endemic nephropathy (BEN) and associated urinary tract tumours. Striking similarities between OTA‐induced porcine nephropathy in pigs and BEN in humans are observed. International Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen (group 2B). Currently, the mode of carcinogenic action by OTA is unknown. OTA is genotoxic following oxidative metabolism. This activity is thought to play a central role in OTA‐mediated carcinogenesis and may be divided into direct (covalent DNA adduction) and indirect (oxidative DNA damage) mechanisms of action. Evidence for a direct mode of genotoxicity has been derived from the sensitive32P‐postlabelling assay. OTA facilitates guanine‐specific DNA adducts
Protein oxidation in living tissues is known to play an essential role in the pathogenesis of relevant degenerative diseases, whereas the occurrence and impact of protein oxidation (Pox) in food systems have been ignored for decades. Currently, the increasing interest among food scientists in this topic has led to highlight the influence that Pox may have on meat quality and human nutrition. Recent studies have contributed to solid scientific knowledge regarding basic oxidation mechanisms, and in advanced methodologies to accurately assess Pox in food systems. Some of these studies have provided insight into the reactions involved in the oxidative modifications undergone by muscle proteins. Moreover, a variety of products derived from oxidized muscle proteins, including cross‐links and carbonyls, have been identified. The impact of oxidation on protein functionality and on specific meat quality traits has also been addressed. Some other recent studies have shed light on the complex interaction mechanisms between myofibrillar proteins and certain redox‐active compounds such as tocopherols and phenolic compounds. This paper is devoted to review the most relevant findings on the occurrence and consequences of Pox in muscle foods. The efficiency of different anti‐oxidant strategies against the oxidation of muscle proteins is also reported.
Các loại quả mọng ăn được, nguồn cung cấp anthocyanin tự nhiên, đã thể hiện một loạt các chức năng sinh y học đa dạng. Những chức năng này bao gồm các rối loạn tim mạch, căng thẳng oxy hóa do tuổi tác, phản ứng viêm, và nhiều bệnh thoái hóa khác nhau. Anthocyanin từ quả mọng cũng cải thiện chức năng thần kinh và nhận thức của não, sức khỏe thị giác cũng như bảo vệ sự toàn vẹn của DNA. Chương này trình bày những lợi ích mang lại của việt quất dại, việt quất đen, mạn việt quất, quả cơm cháy, hạt mâm xôi và dâu tây trong việc bảo vệ sức khỏe con người và phòng ngừa bệnh tật. Hơn nữa, chương này sẽ thảo luận về các lợi ích dược học của sự kết hợp mới của các chiết xuất quả mọng được lựa chọn gọi là OptiBerry, một hỗn hợp của việt quất dại, việt quất đen, mạn việt quất, quả cơm cháy, hạt mâm xôi và dâu tây, và tiềm năng của nó so với từng loại quả mọng riêng lẻ. Các nghiên cứu gần đây tại phòng thí nghiệm của chúng tôi đã chứng minh rằng OptiBerry có hiệu quả chống oxy hóa cao, như thể hiện qua chỉ số năng lực hấp thụ gốc tự do oxy (ORAC) cao, hoạt tính mới chống tạo mạch máu và chống xơ vữa động mạch, cũng như tiềm năng độc tính đối với
The article gives an overview of phytic acid in food and of its significance for human nutrition. It summarises phytate sources in foods and discusses problems of phytic acid/phytate contents of food tables. Data on phytic acid intake are evaluated and daily phytic acid intake depending on food habits is assessed. Degradation of phytate during gastro‐intestinal passage is summarised, the mechanism of phytate interacting with minerals and trace elements in the gastro‐intestinal chyme described and the pathway of inositol phosphate hydrolysis in the gut presented. The present knowledge of phytate absorption is summarised and discussed. Effects of phytate on mineral and trace element bioavailability are reported and phytate degradation during processing and storage is described. Beneficial activities of dietary phytate such as its effects on calcification and kidney stone formation and on lowering blood glucose and lipids are reported. The antioxidative property of phytic acid and its potentional anticancerogenic activities are briefly surveyed. Development of the analysis of phytic acid and other inositol phosphates is described, problems of inositol phosphate determination and detection discussed and the need for standardisation of phytic acid analysis in foods argued.
Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous‐organic solvents, but a significant number of non‐extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non‐extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.
The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non‐extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked.
Blue‐green algae are found in lakes, ponds, rivers and brackish waters throughout the world. In case of excessive growth such as bloom formation, these bacteria can produce inherent toxins in quantities causing toxicity in mammals, including humans. These cyanotoxins include cyclic peptides and alkaloids. Among the cyclic peptides are the microcystins and the nodularins. The alkaloids include anatoxin‐a, anatoxin‐a(S), cylindrospermopsin, saxitoxins (STXs), aplysiatoxins and lyngbyatoxin. Both biological and chemical methods are used to determine cyanotoxins. Bioassays and biochemical assays are nonspecific, so they can only be used as screening methods. HPLC has some good prospects. For the subsequent detection of these toxins different detectors may be used, ranging from simple UV‐spectrometry
Tea leaves produce organic compounds that may be involved in the defense of the plants against invading pathogens including insects, bacteria, fungi, and viruses. These metabolites include polyphenolic compounds, the six so‐called catechins, and the methyl‐xanthine alkaloids caffeine, theobromine, and theophylline. Postharvest inactivation of phenol oxidases in green tea leaves prevents oxidation of the catechins, whereas postharvest enzyme‐catalyzed oxidation (fermentation) of catechins in tea leaves results in the formation of four theaflavins as well as polymeric thearubigins. These substances impart the black color to black teas. Black and partly fermented oolong teas contain both classes of phenolic compounds. A need exists to develop a better understanding of the roles of polyphenolic tea compounds in food and medical microbiology. This overview surveys and interprets our present knowledge of activities of tea flavonoids and teas against foodborne and other pathogenic bacteria, virulent protein toxins produced by some of the bacteria, virulent bacteriophages, pathogenic viruses and fungi. Also covered are synergistic, mechanistic, and bioavailability aspects of the antimicrobial effects. Further research is suggested for each of these categories. The herein described findings are not only of fundamental interest, but also have practical implications for nutrition, food safety, and animal and human health.