International Journal of Molecular Sciences

  1422-0067

  1661-6596

  Thụy Sĩ

Cơ quản chủ quản:  MDPI , Multidisciplinary Digital Publishing Institute (MDPI)

Lĩnh vực:
Inorganic ChemistryOrganic ChemistryComputer Science ApplicationsMedicine (miscellaneous)Molecular BiologyPhysical and Theoretical ChemistryCatalysisSpectroscopy

Phân tích ảnh hưởng

Thông tin về tạp chí

 

The International Journal of Molecular Sciences (ISSN 1422-0067; CODEN: IJMCFK; ISSN 1661-6596 for printed edition) provides an advanced forum for molecular studies in biology and chemistry, with a strong emphasis on molecular biology and molecular medicine. Our aim is to provide rigorous peer review and enable rapid publication of cutting-edge research to educate and inspire the scientific community worldwide. We encourage scientists to publish their experimental, theoretical, and computational results in as much detail as possible, in a regular section (https://www.mdpi.com/journal/ijms/sections) or in a Special Issue (https://www.mdpi.com/journal/ijms/special_issues). Therefore, there is no restriction on the length of the papers or the number of electronic multimedia and supplementary files. For all articles, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others). Manuscript categories: original scientific research articles, comprehensive reviews, communications, case reports, letters, commentaries, editorials, etc. In the International Journal of Molecular Sciences, molecules are the object of study; among those studies, we find: fundamental theoretical problems of broad interest in biology, chemistry and medicine; breakthrough experimental technical progress of broad interest in biology, chemistry and medicine; and application of the theories and novel technologies to specific experimental studies and calculations.

Các bài báo tiêu biểu

CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage
Tập 21 Số 20 - Trang 7556
Miho Kuwahara, Koichi Kadoya, Sei Kondo, Shanqi Fu, Yoshiko Miyake, Ayako Ogo, Mitsuaki Ono, Takayuki Furumatsu, Eiji Nakata, Takako Sasaki, Shogo Minagi, Masaharu Takigawa, Satoshi Kubota, Takako Hattori
Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-β gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.
Evaluation of the Antiradical Properties of Phenolic Acids
Tập 15 Số 9 - Trang 16351-16380
О. В. Королева, Anna Torkova, И. В. Николаев, Ekaterina Khrameeva, Т. В. Федорова, Mikhail Tsentalovich, Ryszard Amarowicz
Antioxidant capacity (AOC) against peroxyl radical and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical cation was measured for a series of p-hydroxybenzoic (HB) and p-hydroxycinnamic (HC) acids at different pH. Quantum-chemical computation was performed using Gaussian 3.0 software package to calculate the geometry and energy parameters of the same compounds. Significant correlations were revealed between AOC and a number of calculated parameters. The most significant AOC descriptors for the studied compounds against peroxyl radical were found to be HOMO energy, rigidity (η) and Mulliken charge on the carbon atom in m-position to the phenolic hydroxyl. The most significant descriptor of the antioxidant properties against the ABTS radical cation at рН 7.40 is electron transfer enthalpy from the phenolate ion. The mechanism of AOC realization has been proposed for HB and HC acids against both radicals.
Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome
Tập 21 Số 21 - Trang 8191
Xianqin Qu, Richard Donnelly
Human sex hormone-binding globulin (SHBG) is a glycoprotein produced by the liver that binds sex steroids with high affinity and specificity. Clinical observations and reports in the literature have suggested a negative correlation between circulating SHBG levels and markers of non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Decreased SHBG levels increase the bioavailability of androgens, which in turn leads to progression of ovarian pathology, anovulation and the phenotypic characteristics of polycystic ovarian syndrome (PCOS). This review will use a case report to illustrate the inter-relationships between SHBG, NAFLD and PCOS. In particular, we will review the evidence that low hepatic SHBG production may be a key step in the pathogenesis of PCOS. Furthermore, there is emerging evidence that serum SHBG levels may be useful as a diagnostic biomarker and therapeutic target for managing women with PCOS.
Adsorption Behavior of Surfactant on Lignite Surface: A Comparative Experimental and Molecular Dynamics Simulation Study
Tập 19 Số 2 - Trang 437
Meng He, Wei Zhang, Xiaoqiang Cao, Xiaofang You, Lin Li
Experimental and computational simulation methods are used to investigate the adsorption behavior of the surfactant nonylphenol ethoxylate (NPEO10), which contains 10 ethylene oxide groups, on the lignite surface. The adsorption of NPEO10 on lignite follow a Langmuir-type isotherm. The thermodynamic parameters of the adsorption process show that the whole process is spontaneous. X-ray photoelectron spectroscopic (XPS) analysis indicates that a significant fraction of the oxygen-containing functional groups on the lignitic surface were covered by NPEO10. Molecular dynamics (MD) simulations show that the NPEO10 molecules were found to adsorb at the water-coal interface. Moreover, polar interactions are the main effect in the adsorption process. The density distributions of coal, NPEO10, and water molecules along the Z axis show that the remaining hydrophobic portions of the surfactant extend into the solution, creating a more hydrophobic coal surface that repels water molecules. The negative interaction energy calculated from the density profiles of the head and tail groups along the three spatial directions between the surfactant and the lignitic surface suggest that the adsorption process is spontaneous. The self-diffusion coefficients show that the presence of NPEO10 causes higher water mobility by improving the hydrophobicity of lignite.
Highly Stretchable and Sensitive Flexible Strain Sensor Based on Fe NWs/Graphene/PEDOT:PSS with a Porous Structure
Tập 23 Số 16 - Trang 8895
Pingan Yang, Sha Xiang, Rui Li, Haibo Ruan, Dachao Chen, Zhihao Zhou, Guangsu Huang, Zhongbang Liu
With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.
The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights
Tập 20 Số 22 - Trang 5615
Antonio Simone Laganà, Simone Garzon, Martin Götte, Paola Viganò, Massimo Piergiuseppe Franchi, Fabio Ghezzi, Dan C. Martin
The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous disease. Considering that endometriosis etiology and pathogenesis are still far from being fully elucidated, the current review aims to offer a comprehensive summary of the available evidence. We performed a narrative review synthesizing the findings of the English literature retrieved from computerized databases from inception to June 2019, using the Medical Subject Headings (MeSH) unique ID term “Endometriosis” (ID:D004715) with “Etiology” (ID:Q000209), “Immunology” (ID:Q000276), “Genetics” (ID:D005823) and “Epigenesis, Genetic” (ID:D044127). Endometriosis may origin from Müllerian or non-Müllerian stem cells including those from the endometrial basal layer, Müllerian remnants, bone marrow, or the peritoneum. The innate ability of endometrial stem cells to regenerate cyclically seems to play a key role, as well as the dysregulated hormonal pathways. The presence of such cells in the peritoneal cavity and what leads to the development of endometriosis is a complex process with a large number of interconnected factors, potentially both inherited and acquired. Genetic predisposition is complex and related to the combined action of several genes with limited influence. The epigenetic mechanisms control many of the processes involved in the immunologic, immunohistochemical, histological, and biological aberrations that characterize the eutopic and ectopic endometrium in affected patients. However, what triggers such alterations is not clear and may be both genetically and epigenetically inherited, or it may be acquired by the particular combination of several elements such as the persistent peritoneal menstrual reflux as well as exogenous factors. The heterogeneity of endometriosis and the different contexts in which it develops suggest that a single etiopathogenetic model is not sufficient to explain its complex pathobiology.
Hepatic Adverse Effects of Fructose Consumption Independent of Overweight/Obesity
Tập 14 Số 11 - Trang 21873-21886
Alini Schultz, Debora Neil, Márcia Barbosa Águila, Carlos Alberto Mandarim‐de‐Lacerda
The chronic intake of fructose has been linked to insulin resistance, obesity, dyslipidemia and nonalcoholic fatty liver disease (NAFLD), which in turn, may progress to nonalcoholic steatohepatitis (NASH). We aimed to evaluate the magnitude of the effects of the chronic consumption of high-fructose (HFr) and high fat (HF) alone or combined. Four groups of male mice were fed different diets for 16 weeks: standard chow (9% fat: SC), HF diet (42% fat), HFr diet (34% fructose) and HF/HFr diet (42% fat, 34% fructose). The food intake was not different among the groups, and the body mass was not greater in the HFr group than in the SC group. The homeostasis model assessment for insulin resistance (HOMA-IR), as well as plasmatic total cholesterol and triglycerides were greater in the groups HF, HFr, and HF/HFr group than in the SC group. We observed in the groups HF, HFr and HF/HFr, compared to the group SC, nonalcoholic fatty liver disease (NAFLD) with a predominance of lipogenesis mediated by SREBP-1c and PPAR-γ, and a reduction of the oxidation mediated by PPAR-α. We also observed an increase in gluconeogenesis mediated by the GLUT-2 and the PEPCK. Importantly, we identified areas of necroinflammation indicating a transition from NAFLD to nonalcoholic steatohepatitis in the HFr and HF/HFr groups. This study is relevant in demonstrating that fructose consumption, even in the absence of obesity, causes serious and deleterious changes in the liver with the presence of the dyslipidemia, insulin resistance (IR), and NAFLD with areas of necroinflammation. These conditions are associated with a poor prognosis.
In Vitro and in Vivo Models of Non-Alcoholic Fatty Liver Disease (NAFLD)
Tập 14 Số 6 - Trang 11963-11980
Giridhar Kanuri, Ina Bergheim
By now, non-alcoholic fatty liver disease (NAFLD) is considered to be among the most common liver diseases world-wide. NAFLD encompasses a broad spectrum of pathological conditions ranging from simple steatosis to steatohepatitis, fibrosis and finally even cirrhosis; however, only a minority of patients progress to end-stages of the disease, and the course of the disease progression to the later stages seems to be slow, developing progressively over several years. Key risk factors including overweight, insulin resistance, a sedentary life-style and an altered dietary pattern, as well as genetic factors and disturbances of the intestinal barrier function have been identified in recent years. Despite intense research efforts that lead to the identification of these risk factors, knowledge about disease initiation and molecular mechanisms involved in progression is still limited. This review summarizes diet-induced and genetic animal models, as well as cell culture models commonly used in recent years to add to the understanding of the mechanisms involved in NAFLD, also referring to their advantages and disadvantages.
Contribution of Corticotropin-Releasing Factor Receptor 1 (CRF1) to Serotonin Receptor 5-HT2CR Function in Amygdala Neurons in a Neuropathic Pain Model
Tập 20 Số 18 - Trang 4380
Guangchen Ji, Volker Neugebauer
The amygdala plays a key role in emotional-affective aspects of pain and in pain modulation. The central nucleus (CeA) serves major amygdala output functions related to emotional-affective behaviors and pain modulation. Our previous studies implicated the corticotropin-releasing factor (CRF) system in amygdala plasticity and pain behaviors in an arthritis model. We also showed that serotonin (5-HT) receptor subtype 5-HT2CR in the basolateral amygdala (BLA) contributes to increased CeA output and neuropathic pain-like behaviors. Here, we tested the novel hypothesis that 5-HT2CR in the BLA drives CRF1 receptor activation to increase CeA neuronal activity in neuropathic pain. Extracellular single-unit recordings of CeA neurons in anesthetized adult male rats detected increased activity in neuropathic rats (spinal nerve ligation model) compared to sham controls. Increased CeA activity was blocked by local knockdown or pharmacological blockade of 5-HT2CR in the BLA, using stereotaxic administration of 5-HT2CR short hairpin RNA (shRNA) viral vector or a 5-HT2CR antagonist (SB242084), respectively. Stereotaxic administration of a CRF1 receptor antagonist (NBI27914) into the BLA also decreased CeA activity in neuropathic rats and blocked the facilitatory effects of a 5-HT2CR agonist (WAY161503) administered stereotaxically into the BLA. Conversely, local (BLA) knockdown of 5-HT2CR eliminated the inhibitory effect of NBI27914 and the facilitatory effect of WAY161503 in neuropathic rats. The data suggest that 5-HT2CR activation in the BLA contributes to neuropathic pain-related amygdala (CeA) activity by engaging CRF1 receptor signaling.
Structural Features of Tight-Junction Proteins
Tập 20 Số 23 - Trang 6020
Udo Heinemann, Anja Schütz
Tight junctions are complex supramolecular entities composed of integral membrane proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic system of protein–protein interactions. Three-dimensional structures of several tight-junction proteins or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular interactions that contribute to the formation, integrity, or function of tight junctions. In addition, the known experimental structures have allowed the modeling of ligand-binding events involving tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show that these proteins are composed of a limited set of structural motifs and highlight common types of interactions between tight-junction proteins and their ligands involving these motifs.