Các hạt nano bạc: Tổng hợp, đặc trưng, tính chất, ứng dụng và các phương pháp điều trị
Tóm tắt
Các tiến bộ gần đây trong lĩnh vực nanoscience và nanotechnology đã thay đổi một cách căn bản cách chúng ta chẩn đoán, điều trị và ngăn ngừa nhiều bệnh tật trong mọi khía cạnh của cuộc sống con người. Các hạt nano bạc (AgNPs) là một trong những loại vật liệu nano quan trọng và hấp dẫn nhất trong số các hạt nano kim loại liên quan đến ứng dụng y sinh. AgNPs đóng vai trò quan trọng trong nanoscience và nanotechnology, đặc biệt là trong nanomedicine. Mặc dù một số kim loại quý đã được sử dụng cho nhiều mục đích khác nhau, nhưng AgNPs lại được tập trung vào các ứng dụng tiềm năng trong chẩn đoán và điều trị ung thư. Trong bài tổng quan này, chúng tôi thảo luận về việc tổng hợp AgNPs bằng các phương pháp vật lý, hóa học và sinh học. Chúng tôi cũng thảo luận về các tính chất của AgNPs và các phương pháp để đặc trưng hóa chúng. Quan trọng hơn, chúng tôi thảo luận sâu rộng về các ứng dụng sinh học đa chức năng của AgNPs; ví dụ, như là các tác nhân kháng khuẩn, kháng nấm, kháng virus, kháng viêm, kháng tăng mạch, và kháng ung thư, cũng như cơ chế hoạt động của AgNPs trong điều trị ung thư. Ngoài ra, chúng tôi cũng thảo luận về các phương pháp điều trị và thách thức trong liệu pháp ung thư sử dụng AgNPs. Cuối cùng, chúng tôi kết luận bằng cách thảo luận về triển vọng tương lai của AgNPs.
Từ khóa
Tài liệu tham khảo
Gurunathan, 2015, Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy, Int. J. Nanomed., 10, 4203, 10.2147/IJN.S83953
Li, 2010, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol., 8, 1115, 10.1007/s00253-009-2159-5
Mukherjee, 2001, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis, Nano Lett., 1, 515, 10.1021/nl0155274
Chernousova, 2013, Silver as antibacterial agent: Ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923
Li, 2014, In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window, Biomaterials, 35, 393, 10.1016/j.biomaterials.2013.10.010
Sondi, 2004, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012
Li, 2001, Band gap variation of size- and shape-controlled colloidal CdSe quantum rods, Nano Lett., 1, 349, 10.1021/nl015559r
Sharma, 2009, Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface, 145, 83, 10.1016/j.cis.2008.09.002
Gurunathan, 2009, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids Surf. B Biointerfaces, 74, 328, 10.1016/j.colsurfb.2009.07.048
Lin, 2014, Techniques for physicochemical characterization of nanomaterials, Biotechnol. Adv., 32, 711, 10.1016/j.biotechadv.2013.11.006
Pleus, R. (2012). Nanotechnologies-Guidance on Physicochemical Characterization of Engineered Nanoscale Materials for Toxicologic Assessment, ISO.
Murdock, 2008, Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique, Toxicol. Sci., 101, 239, 10.1093/toxsci/kfm240
Gurunathan, 2015, Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule, Int. J. Nanomed., 10, 2951, 10.2147/IJN.S79879
Sapsford, 2011, Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques, Anal. Chem., 83, 4453, 10.1021/ac200853a
Carlson, 2008, Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species, J. Phys. Chem. B, 112, 13608, 10.1021/jp712087m
Jo, 2015, Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases, Nanomedicine, 11, 1603, 10.1016/j.nano.2015.04.015
Staquicini, 2011, Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma, J. Clin. Investig., 121, 161, 10.1172/JCI44798
Duan, 2013, Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking, Small, 9, 1521, 10.1002/smll.201201390
Albanese, 2012, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng., 14, 1, 10.1146/annurev-bioeng-071811-150124
Prucek, 2009, Antifungal activity of silver nanoparticles against Candida spp., Biomaterials, 30, 6333, 10.1016/j.biomaterials.2009.07.065
Zodrow, 2009, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res., 43, 715, 10.1016/j.watres.2008.11.014
Wong, 2009, Further evidence of the anti-inflammatory effects of silver nanoparticles, ChemMedChem, 4, 1129, 10.1002/cmdc.200900049
Gurunathan, 2009, Antiangiogenic properties of silver nanoparticles, Biomaterials, 30, 6341, 10.1016/j.biomaterials.2009.08.008
Sriram, 2010, Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model, Int. J. Nanomed., 5, 753
American Cancer Society (2015). Cancer Facts & Figures 2015, American Cancer Society.
Gurav, 1994, Generation of nanometer-size fullerene particles via vapor condensation, Chem. Phys. Lett., 218, 304, 10.1016/0009-2614(93)E1491-X
Kruis, 2000, Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles, Mater. Sci. Eng. B, 69, 329, 10.1016/S0921-5107(99)00298-6
Magnusson, 1999, Size-selected gold nanoparticles by aerosol technology, Nanostruct. Mater., 12, 45, 10.1016/S0965-9773(99)00063-X
1988, New approaches to in situ characterization of ultrafine agglomerates, J. Aerosol Sci., 19, 553, 10.1016/0021-8502(88)90207-8
Tien, 2008, Novel technique for preparing a nano-silver water suspension by the arc-discharge method, Rev. Adv. Mater. Sci., 18, 750
Pluym, 1993, Solid silver particle production by spray pyrolysis, J. Aerosol Sci., 24, 383, 10.1016/0021-8502(93)90010-7
Elsupikhe, 2015, Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan, Nanoscale Res. Lett., 10, 302, 10.1186/s11671-015-0916-1
Shameli, 2010, Synthesis of silver/montmorillonite nanocomposites using γ-irradiation, Int. J. Nanomed., 5, 1067, 10.2147/IJN.S15033
Shameli, 2010, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity, Int. J. Nanomed., 5, 875, 10.2147/IJN.S13632
Tsuji, 2005, Microwave-assisted synthesis of metallic nanostructures in solution, Chem. Eur. J., 11, 440, 10.1002/chem.200400417
Eftaiha, 2010, Synthesis and applications of silver nanoparticles, Arab. J. Chem., 3, 135, 10.1016/j.arabjc.2010.04.008
Tao, 2006, Polyhedral silver nanocrystals with distinct scattering signatures, Angew. Chem. Int. Ed., 45, 4597, 10.1002/anie.200601277
Wiley, 2005, Shape-controlled synthesis of metal nanostructures: The case of silver, Chemistry, 11, 454, 10.1002/chem.200400927
Deepak, 2011, Synthesis of gold and silver nanoparticles using purified URAK, Colloid Surface B, 86, 353, 10.1016/j.colsurfb.2011.04.019
Amulyavichus, 1998, Study of chemical composition of nanostructural materials prepared by laser cutting of metals, Fiz. Met. Metalloved., 85, 111
Mallick, 2004, Polymer stabilized silver nanoparticles: A photochemical synthesis route, J. Mater. Sci., 39, 4459, 10.1023/B:JMSC.0000034138.80116.50
Malik, 2002, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chem. Mater., 14, 2004, 10.1021/cm011154w
Sergeev, 1999, Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate), Mendeleev Commun., 4, 130, 10.1070/MC1999v009n04ABEH001080
Kohno, 2000, Formation and size control of silver nanoparticles by laser ablation in aqueous solution, J. Phys. Chem. B, 104, 9111, 10.1021/jp001336y
Hulteen, 1999, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B, 103, 3854, 10.1021/jp9904771
Zhu, 2001, Preparation of silver nanorods by electrochemical methods, Mater. Lett., 49, 91, 10.1016/S0167-577X(00)00349-9
Abid, 2002, Preparation of silver nanoparticles in solution from a silver salt by laser irradiation, Chem. Commun., 7, 792, 10.1039/b200272h
Talebi, 2010, Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate, J. Mater. Sci., 45, 3318, 10.1007/s10853-010-4349-z
Ramezani, 2014, Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition, Mater. Lett., 130, 259, 10.1016/j.matlet.2014.05.133
Zhang, 2011, A systematic study of the synthesis of silver nanoplates: Is citrate a “Magic” Reagent?, J. Am. Chem. Soc., 133, 18931, 10.1021/ja2080345
Ganaie, 2015, Green synthesis of silver nanoparticles using an otherwise worthless weed mimosa (Mimosa pudica): Feasibility and process development toward shape/size control, Part. Sci. Technol., 33, 638, 10.1080/02726351.2015.1016644
Gurunathan, 2014, A green chemistry approach for synthesizing biocompatible gold nanoparticles, Nanoscale Res. Lett., 9, 248, 10.1186/1556-276X-9-248
Gurunathan, 2013, Green chemistry approach for the synthesis of biocompatible graphene, Int. J. Nanomed., 8, 2719, 10.2147/IJN.S45174
Gurunathan, 2015, Reduced graphene oxide-silver nanoparticle nanocomposite: A potential anticancer nanotherapy, Int. J. Nanomed., 10, 6257, 10.2147/IJN.S92449
Kalimuthu, 2008, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloid Surface B, 65, 150, 10.1016/j.colsurfb.2008.02.018
Kalishwaralal, 2008, Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis, Mater. Lett., 62, 4411, 10.1016/j.matlet.2008.06.051
Mullen, 1989, Bacterial sorption of heavy metals, Appl. Environ. Microbiol., 55, 3143, 10.1128/aem.55.12.3143-3149.1989
Klaus, 1999, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. USA, 96, 13611, 10.1073/pnas.96.24.13611
Nair, 2002, Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains, Cryst. Growth Des., 2, 293, 10.1021/cg0255164
Kalishwaralal, 2010, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Colloids Surf. B Biointerfaces, 77, 257, 10.1016/j.colsurfb.2010.02.007
Shankar, 2003, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Prog., 19, 1627, 10.1021/bp034070w
Gurunathan, 2013, Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7), J. Ind. Eng. Chem., 19, 1600, 10.1016/j.jiec.2013.01.029
Gurunathan, 2015, Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells, Nanoscale Res. Lett., 10, 1, 10.1186/s11671-015-0747-0
Gurunathan, 2015, Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria, J. Ind. Eng. Chem., 29, 217, 10.1016/j.jiec.2015.04.005
Leung, 2010, Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan, Mater. Chem. Phys., 121, 402, 10.1016/j.matchemphys.2010.02.026
Kumar, 2014, Sonochemical synthesis of silver nanoparticles using starch: A comparison, Bioinorg. Chem. Appl., 2014, 784268, 10.1155/2014/784268
Shankar, 2015, Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films, Carbohydr. Polym., 130, 353, 10.1016/j.carbpol.2015.05.018
Gurunathan, 2014, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Res. Lett., 9, 373, 10.1186/1556-276X-9-373
Thakkar, 2010, Biological synthesis of metallic nanoparticles, Nanomedicine, 6, 257, 10.1016/j.nano.2009.07.002
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06
Pyatenko, 2007, Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions, J. Phys. Chem. C, 111, 7910, 10.1021/jp071080x
Khodashenas, B., and Ghorbani, H.R. (2015). Synthesis of silver nanoparticles with different shapes. Arab. J. Chem.
Sastry, 1998, Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films, J. Phys. Chem. B, 102, 1404, 10.1021/jp9719873
UV/VIS/IR Spectroscopy Analysis of Nanoparticles, 2012. Available online: http://50.87.149.212/sites/default/files/nanoComposix%20Guidelines%20for%20UV-vis%20Analysis.pdf.
Huang, 2007, Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy, Nanomed. Lond., 2, 681, 10.2217/17435889.2.5.681
Leung, 2006, Particle-size and velocity measurements in flowing conditions using dynamic light scattering, Appl. Opt., 45, 2186, 10.1364/AO.45.002186
Tomaszewska, 2013, Detection limits of DLS and UV-vis spectroscopy in characterization of polydisperse nanoparticles colloids, J. Nanomater., 2013, 313081, 10.1155/2013/313081
Das, 2009, Preparation of silver nanoparticles and their characterization, J. Nanotechnol., 5, 1
Link, 2003, Optical properties and ultrafast dynamics of metallic nanocrystals, Annu. Rev. Phys. Chem., 54, 331, 10.1146/annurev.physchem.54.011002.103759
Noginov, 2007, The effect of gain and absorption on surface plasmons in metal nanoparticles, Appl. Phys. B, 86, 455, 10.1007/s00340-006-2401-0
Nath, 2007, Synthesis of CdS and ZnS quantum dots and their applications in Electronics, Nano Trends, 2, 20
Taleb, 1998, Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles, J. Phys. Chem. B, 102, 2214, 10.1021/jp972807s
He, 2002, Preparation of polychrome silver nanoparticles in different solvents, J. Mater. Chem., 12, 3783, 10.1039/b205214h
Henglein, 1993, Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem., 97, 5457, 10.1021/j100123a004
Sastry, 1997, pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles, Colloids Surf. A Physicochem. Eng. Asp., 127, 221, 10.1016/S0927-7757(97)00087-3
Waseda, Y., Matsubara, E., and Shinoda, K. (2011). X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems, Springer Verlag.
Ivanisevic, 2010, physical stability studies of miscible amorphous solid dispersions, J. Pharm. Sci., 99, 4005, 10.1002/jps.22247
Cabral, 2013, End-of-life Zn-MnO2 batteries: Electrode materials characterization, Environ. Technol., 34, 1283, 10.1080/09593330.2012.745621
Dey, 2009, Characterization of microplasma sprayed hydroxyapatite coating, J. Therm. Spray Technol., 18, 578, 10.1007/s11666-009-9386-2
Ananias, 2013, Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties, Microporous Mesoporous Mater., 166, 50, 10.1016/j.micromeso.2012.04.032
Singh, 2013, A study of ZnO nanoparticles and ZnO-EG nanofluid, J. Exp. Nanosci., 8, 567, 10.1080/17458080.2011.602369
Robin, 2009, Introduction to powder diffraction and its application to nanoscale and heterogeneous materials, Nanotechnol. Undergrad. Educ., 1010, 75
Zawrah, 2013, Preparation by mechanical alloying, characterization and sintering of Cu–20 wt. % Al2O3 nanocomposites, Mater. Des., 46, 485, 10.1016/j.matdes.2012.10.032
Yazdian, 2013, In-situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism, Adv. Powder Technol., 24, 106, 10.1016/j.apt.2012.03.004
Wu, 2011, One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties, New J. Chem., 35, 2902, 10.1039/c1nj20674e
Vaia, 2002, X-ray powder diffraction of polymer/layered silicate nanocomposites: Model and practice, J. Polym. Sci. Part B Polym. Phys., 40, 1590, 10.1002/polb.10214
Ray, 2003, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., 28, 1539, 10.1016/j.progpolymsci.2003.08.002
Pavlidou, 2008, A review on polymer–layered silicate nanocomposites, Prog. Polym. Sci., 33, 1119, 10.1016/j.progpolymsci.2008.07.008
Kou, 2012, Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange, Rsc. Adv., 2, 12636, 10.1039/c2ra21821f
Khan, 2013, Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane, Compos. Part B Eng., 45, 1486, 10.1016/j.compositesb.2012.09.023
Dolatmoradi, 2013, Mechanochemical synthesis of W–Cu nanocomposites via in-situ co-reduction of the oxides, Powder Technol., 233, 208, 10.1016/j.powtec.2012.08.013
Aghili, 2012, In-situ synthesis of alumina reinforced (Fe,Cr)3Al intermetallic matrix nanocomposite, Mater. Manuf. Process., 27, 1348, 10.1080/10426914.2012.663141
Schimmel, P.R. (1980). Techniques for the Study of Biological Structure and Function, W.H. Freeman.
Das, 2014, Current applications of X-ray powder diffraction—A review, Rev. Adv. Mater. Sci., 38, 95
Caminade, 2005, Characterization of dendrimers, Adv. Drug Deliv. Rev., 57, 2130, 10.1016/j.addr.2005.09.011
Zanchet, D., Hall, B.D., and Ugarte, D. (2001). Characterization of Nanophase Materials, Wiley-VCH Verlag GmbH.
Joshi, 2008, Characterization techniques for nanotechnology applications in textiles, Indian J. Fiber Text. Res., 33, 304
Cao, G. (2011). Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, World Scientific Publishing Inc.
Inagaki, 2013, Biophysical characterization of membrane proteins in nanodiscs, Methods, 59, 287, 10.1016/j.ymeth.2012.11.006
Jans, 2009, Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies, Anal. Chem., 81, 9425, 10.1021/ac901822w
Khlebtsov, 2011, On the measurement of gold nanoparticle sizes by the dynamic light scattering method, Colloid J., 73, 118, 10.1134/S1061933X11010078
Pasa, 2009, Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles, Mater. Sci. Eng. C, 29, 638, 10.1016/j.msec.2008.10.040
Fissan, 2014, Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization, Anal. Methods, 6, 7324, 10.1039/C4AY01203H
Berne, B.J., and Pecora, R. (2000). Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Courier Corporation.
Koppel, 1972, Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants, J. Chem. Phys., 57, 4814, 10.1063/1.1678153
Dieckmann, 2009, Particle size distribution measurements of manganese-doped ZnS nanoparticles, Anal. Chem., 81, 3889, 10.1021/ac900043y
Lange, 1995, Comparative test of methods to determine particle size and particle size distribution in the submicron range, Part. Part. Syst. Charact., 12, 148, 10.1002/ppsc.19950120307
Gerwert, 1999, Molecular reaction mechanisms of proteins monitored by time-resolved FTIR-spectroscopy, Biol. Chem., 380, 931, 10.1515/BC.1999.115
Jung, 2000, Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy, J. Mol. Recognit., 13, 325, 10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C
Kim, 2001, Reaction-induced FT-IR spectroscopic studies of biological energy conversion in oxygenic photosynthesis and transport, J. Phys. Chem. B, 105, 4072, 10.1021/jp0042516
Mantele, 1988, Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria, Proc. Natl. Acad. Sci. USA, 85, 8468, 10.1073/pnas.85.22.8468
Vogel, 2000, Vibrational spectroscopy as a tool for probing protein function, Curr. Opin. Chem. Biol., 4, 518, 10.1016/S1367-5931(00)00125-3
Wharton, 2000, Infrared spectroscopy of enzyme reaction intermediates, Nat. Prod. Rep., 17, 447, 10.1039/b002066o
Zscherp, 2001, Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms, Biochemistry, 40, 1875, 10.1021/bi002567y
Shang, 2007, pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study, Langmuir, 23, 2714, 10.1021/la062064e
Perevedentseva, 2010, Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins, Quantum Electron., 40, 1089, 10.1070/QE2010v040n12ABEH014507
Baudot, 2010, FTIR spectroscopy as a tool for nano-material characterization, Infrared Phys. Technol., 53, 434, 10.1016/j.infrared.2010.09.002
Barth, 2002, What vibrations tell us about proteins, Q. Rev. Biophys., 35, 369, 10.1017/S0033583502003815
Kumar, 2010, Following enzyme activity with infrared spectroscopy, Sensors, 10, 2626, 10.3390/s100402626
Goormaghtigh, 1999, Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes, Biochim. Biophys. Acta, 1422, 105, 10.1016/S0304-4157(99)00004-0
Hind, 2001, At the solid/liquid interface: FTIR/ATR—The tool of choice, Adv. Colloid Interface Sci., 93, 91, 10.1016/S0001-8686(00)00079-8
Kazarian, 2006, Applications of ATR-FTIR spectroscopic imaging to biomedical samples, Biochim. Biophys. Acta Biomembr., 1758, 858, 10.1016/j.bbamem.2006.02.011
Liu, 2007, Nanomedicine for implants: A review of studies and necessary experimental tools, Biomaterials, 28, 354, 10.1016/j.biomaterials.2006.08.049
Acosta, 2005, Synthesis, characterization, and application of melamine based dendrimers supported on silica gel, J. Polym. Sci. Polym. Chem., 43, 168, 10.1002/pola.20493
Demathieu, 1999, Characterization of dendrimers by X-ray photoelectron spectroscopy, Appl. Spectrosc., 53, 1277, 10.1366/0003702991945524
Manna, 2001, Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles, Chem. Mater., 13, 1674, 10.1021/cm000416b
Desimoni, 2015, X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review, Chemosensors, 3, 70, 10.3390/chemosensors3020070
Gautam, 2012, Spectroscopic characterization of dengrimers, Int. J. Pharm. Pharm. Sci., 4, 77
Pawley, 1997, The development of field-emission scanning electron microscopy for imaging biological surfaces, Scanning, 19, 324
Wang, 2000, transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153, 10.1021/jp993593c
Méndez-Vilas, A., and Díaz, J. (2007). Modern Research and Educational Topics in Microscopy, Formatex Research Center.
Hall, 2007, Characterization of nanoparticles for therapeutics, Nanomed. Nanotechnol. Biol. Med., 2, 789
Ranter, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E. (2004). Biomaterials Science—An Introduction to Materials in Medicine, Elsevier.
Hinterdorfer, 2012, Single-molecule imaging of cell surfaces using near-field nanoscopy, Acc. Chem. Res., 45, 327, 10.1021/ar2001167
Koh, 2008, TEM analyses of synthetic anti-ferromagnetic (SAF) nanoparticles fabricated using different release layers, Ultramicroscopy, 108, 1490, 10.1016/j.ultramic.2008.03.012
Mavrocordatos, 2004, Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy, Water Sci. Technol., 50, 9, 10.2166/wst.2004.0690
Picas, 2012, Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale, Chem. Phys. Lipids, 165, 845, 10.1016/j.chemphyslip.2012.10.005
Song, 2013, Enhanced Antibacterial Activity of silver/polyrhodanine-composite-decorated silica nanoparticles, ACS Appl. Mater. Interfaces, 5, 11563, 10.1021/am402310u
Parot, 2007, Past, present and future of atomic force microscopy in life sciences and medicine, J. Mol. Recognit., 20, 418, 10.1002/jmr.857
Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003
Tiede, 2008, Detection and characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 25, 795, 10.1080/02652030802007553
Gmoshinski, 2013, Nanomaterials and nanotechnologies: Methods of analysis and control, Russ. Chem. Rev., 82, 48, 10.1070/RC2013v082n01ABEH004329
Reinhard, 2005, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nat. Biotechnol., 23, 741, 10.1038/nbt1100
Sannomiya, 2008, In situ sensing of single binding events by localized surface plasmon resonance, Nano Lett., 8, 3450, 10.1021/nl802317d
Li, 2010, LSPR sensing of molecular biothiols based on noncoupled gold nanorods, Langmuir, 26, 9130, 10.1021/la101285r
Shopova, 2011, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection, Appl. Phys. Lett., 98, 243104, 10.1063/1.3599584
Zijlstra, 2012, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol., 7, 379, 10.1038/nnano.2012.51
Lis, 2014, Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity, Beilstein J. Nanotechnol., 5, 2275, 10.3762/bjnano.5.237
Gliga, 2014, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release, Part. Fiber Toxicol., 11, 11, 10.1186/1743-8977-11-11
Han, 2014, Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line, Nanoscale Res. Lett., 9, 459, 10.1186/1556-276X-9-459
Johnston, 2010, A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity, Crit. Rev. Toxicol., 40, 328, 10.3109/10408440903453074
Liu, 2010, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane, Int. J. Nanomed., 5, 1017, 10.2147/IJN.S14572
Loza, 2014, The dissolution and biological effects of silver nanoparticles in biological media, J. Mater. Chem. B, 2, 1634, 10.1039/c3tb21569e
Misra, 2012, Hybrid nanoscale architecture for enhancement of antimicrobial activity: Immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes, Adv. Eng. Mater., 14, B93, 10.1002/adem.201180081
Park, 2011, The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles, Biomaterials, 32, 9810, 10.1016/j.biomaterials.2011.08.085
Powers, 2011, Silver nanoparticles compromise neurodevelopment in PC12 cells: Critical contributions of silver ion, particle size, coating, and composition, Environ. Health Perspect., 119, 37, 10.1289/ehp.1002337
Wei, 2015, Silver nanoparticles: Synthesis, properties, and therapeutic applications, Drug Discov. Today, 20, 595, 10.1016/j.drudis.2014.11.014
Sriram, 2012, Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells, Nanosci. Methods, 1, 56, 10.1080/17458080.2010.547878
Stoehr, 2011, Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells, Part. Fiber Toxicol., 8, 36, 10.1186/1743-8977-8-36
Rycenga, 2011, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev., 111, 3669, 10.1021/cr100275d
Suresh, 2012, Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell Types, Langmuir, 28, 2727, 10.1021/la2042058
Tabata, 1988, Macrophage phagocytosis of biodegradable microspheres composed of l-lactic acid/glycolic acid homo- and copolymers, J. Biomed. Mater. Res., 22, 837, 10.1002/jbm.820221002
Schlinkert, 2015, The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types, J. Nanobiotechnol., 13, 1, 10.1186/s12951-014-0062-4
Tiyaboonchai, 2003, Chitosan nanoparticles: A promising system for drug delivery, Naresuan Univ. J., 11, 51
Baker, 2005, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5, 244, 10.1166/jnn.2005.034
Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine, 3, 95, 10.1016/j.nano.2006.12.001
Shahverdi, 2007, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, Nanomedicine, 3, 168, 10.1016/j.nano.2007.02.001
Sanpui, 2008, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite, Int. J. Food Microbiol., 124, 142, 10.1016/j.ijfoodmicro.2008.03.004
Nanda, 2009, Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomedicine, 5, 452, 10.1016/j.nano.2009.01.012
Pal, 2009, Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide, J. Am. Chem. Soc., 131, 16147, 10.1021/ja9051125
Kalishwaralal, 2010, Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis, Colloid Surface B, 79, 340, 10.1016/j.colsurfb.2010.04.014
Parashar, 2011, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology, 22, 415104, 10.1088/0957-4484/22/41/415104
Besinis, 2014, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays, Nanotoxicology, 8, 1, 10.3109/17435390.2012.742935
Agnihotri, 2013, Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver, Nanoscale, 5, 7328, 10.1039/c3nr00024a
Khurana, 2014, Antibacterial activity of silver: The role of hydrodynamic particle size at nanoscale, J. Biomed. Mater. Res. A, 102, 3361, 10.1002/jbm.a.35005
Chen, 2014, Preparation, antibacterial, and antioxidant activities of silver/chitosan composites, J. Carbohydr. Chem., 33, 298, 10.1080/07328303.2014.931962
Shao, 2015, Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite, ACS Appl. Mater. Interfaces, 7, 6966, 10.1021/acsami.5b00937
Lima, 2015, Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus, Int. J. Nanomed., 10, 6847
Eckhardt, 2013, nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev., 113, 4708, 10.1021/cr300288v
Kim, 2008, Antifungal effect of silver nanoparticles on dermatophytes, J. Microbiol. Biotechnol., 18, 1482
Malpartida, 2009, The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles, Nanotechnology, 20, 085103, 10.1088/0957-4484/20/8/085103
Jain, 2009, Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use, Mol. Pharm., 6, 1388, 10.1021/mp900056g
Gajbhiye, 2009, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, Nanomedicine, 5, 382, 10.1016/j.nano.2009.06.005
Monteiro, 2012, Silver nanoparticles: Influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms, Lett. Appl. Microbiol., 54, 383, 10.1111/j.1472-765X.2012.03219.x
Krishnaraj, 2012, Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi, Spectrochim. Acta A, 93, 95, 10.1016/j.saa.2012.03.002
Gopinath, 2013, Extracellular biosynthesis of silver nanoparticles using Bacillus sp GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum, Spectrochim. Acta A, 106, 170, 10.1016/j.saa.2012.12.087
Li, 2013, The antifungal activity of graphene oxide-silver nanocomposites, Biomaterials, 34, 3882, 10.1016/j.biomaterials.2013.02.001
Monteiro, 2013, Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms, Mycoses, 56, 672, 10.1111/myc.12093
Mishra, S., Singh, B.R., Singh, A., Keswani, C., Naqvi, A.H., and Singh, H.B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE, 9.
Ogar, 2015, Antifungal properties of silver nanoparticles against indoor mould growth, Sci. Total Environ., 521, 305, 10.1016/j.scitotenv.2015.03.101
Elechiguerra, 2005, Interaction of silver nanoparticles with HIV-1, J. Nanobiotechnol., 3, 6, 10.1186/1477-3155-3-6
Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 916, 10.1021/pr0504079
Lara, 2010, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnol., 8, 1, 10.1186/1477-3155-8-1
Xiang, 2011, Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro, J. Virol. Methods, 178, 137, 10.1016/j.jviromet.2011.09.003
Fayaz, 2012, Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection, Int. J. Nanomed., 7, 5007
Trefry, 2013, Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism, J. Biomed. Nanotechnol., 9, 1624, 10.1166/jbn.2013.1659
Xiang, 2013, Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo, Int. J. Nanomed., 8, 4103, 10.2147/IJN.S53622
Gaikwad, 2013, Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3, Int. J. Nanomed., 8, 4303
Khandelwal, 2014, Silver nanoparticles impair Peste des petits ruminants virus replication, Virus Res., 190, 1, 10.1016/j.virusres.2014.06.011
Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., Nowak, Z., Donten, M., Celichowski, G., and Grobelny, J. (2014). Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE, 9.
Swathy, 2014, Antimicrobial silver: An unprecedented anion effect, Sci. Rep., 4, 7161, 10.1038/srep07161
Elbeshehy, 2015, Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens, Front. Microbiol., 6, 453, 10.3389/fmicb.2015.00453
Eming, 2007, Inflammation in wound repair: Molecular and cellular mechanisms, J. Investig. Dermatol., 127, 514, 10.1038/sj.jid.5700701
Wong, 2007, Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils, Am. J. Respir. Cell Mol. Biol., 37, 85, 10.1165/rcmb.2006-0457OC
Broughton, 2006, The basic science of wound healing, Plast. Reconstr. Surg., 117, 12s, 10.1097/01.prs.0000225430.42531.c2
Witte, 1997, General principles of wound healing, Surg. Clin. N. Am., 77, 509, 10.1016/S0039-6109(05)70566-1
Bhol, 2007, Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis, Dig. Dis. Sci., 52, 2732, 10.1007/s10620-006-9738-4
Tian, 2007, Topical delivery of silver nanoparticles promotes wound healing, ChemMedChem, 2, 129, 10.1002/cmdc.200600171
Nadworny, 2010, Does nanocrystalline silver have a transferable effect?, Wound Repair Regen., 18, 254, 10.1111/j.1524-475X.2010.00579.x
David, 2014, Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract, Colloids Surfaces B Biointerfaces, 122, 767, 10.1016/j.colsurfb.2014.08.018
Timar, 2001, Angiogenesis-dependent diseases and angiogenesis therapy, Pathol. Oncol. Res., 7, 85, 10.1007/BF03032573
Kalishwaralal, 2009, Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells, Colloids Surf. B Biointerfaces, 73, 51, 10.1016/j.colsurfb.2009.04.025
Kemp, 2009, Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties, Nanotechnology, 20, 455104, 10.1088/0957-4484/20/45/455104
Kim, 2012, Flt1 peptide-hyaluronate conjugate micelle-like nanoparticles encapsulating genistein for the treatment of ocular neovascularization, Acta Biomater., 8, 3932, 10.1016/j.actbio.2012.07.016
Baharara, 2014, Anti-angiogenesis effect of biogenic silver nanoparticles synthesized using saliva officinalis on chick chorioalantoic membrane (CAM), Molecules, 19, 13498, 10.3390/molecules190913498
Thorley, 2013, New perspectives in nanomedicine, Pharmacol. Ther., 140, 176, 10.1016/j.pharmthera.2013.06.008
Gopinath, 2008, Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy, Nanotechnology, 19, 075104, 10.1088/0957-4484/19/7/075104
AshaRani, 2009, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano, 3, 279, 10.1021/nn800596w
Jun, 2010, Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications, Small, 6, 119, 10.1002/smll.200901459
Wang, 2010, Antineoplastic activities of protein-conjugated silver sulfide nano-crystals with different shapes, J. Inorg. Biochem., 104, 87, 10.1016/j.jinorgbio.2009.10.015
Sanpui, 2011, Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier, ACS Appl. Mater. Interfaces, 3, 218, 10.1021/am100840c
Boca, 2011, Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy, Cancer Lett., 311, 131, 10.1016/j.canlet.2011.06.022
Guo, 2013, Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions, Biomaterials, 34, 7884, 10.1016/j.biomaterials.2013.07.015
Gurunathan, 2013, Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells, BioMed Res. Int., 2013, 535796, 10.1155/2013/535796
Locatelli, 2014, Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma, Nanomedicine, 9, 839, 10.2217/nnm.14.1
Ortega, 2015, Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast, Int. J. Nanomed., 10, 2021
Banti, 2013, Anti-proliferative and anti-tumor activity of silver(I) compounds, Metallomics, 5, 569, 10.1039/c3mt00046j
Kelkar, 2011, Theranostics: Combining imaging and therapy, Bioconjug. Chem., 22, 1879, 10.1021/bc200151q
Meyers, 2013, Solution-focused therapy as a culturally acknowledging approach with america, J. Multicult. Couns. Dev., 41, 47, 10.1002/j.2161-1912.2013.00026.x
Liu, 2012, chemical transformations of nanosilver in biological environments, ACS Nano, 6, 9887, 10.1021/nn303449n
Etheridge, 2013, The big picture on small medicine: The state of nanomedicine products approved for use or in clinical trials, Nanomedicine, 9, 1, 10.1016/j.nano.2012.05.013
Ge, 2014, Nanosilver particles in medical applications: Synthesis, performance, and toxicity, Int. J. Nanomed., 9, 2399
Zhou, 2011, A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma, Int. J. Nanomed., 6, 381, 10.2147/IJN.S13249
Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s
Asharani, 2012, Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells, Genome Integr., 3, 2, 10.1186/2041-9414-3-2
Foldbjerg, 2012, Global gene expression profiling of human lung epithelial cells after exposure to nanosilver, Toxicol. Sci., 130, 145, 10.1093/toxsci/kfs225
Lin, 2014, Inhibition of autophagy enhances the anticancer activity of silver nanoparticles, Autophagy, 10, 2006, 10.4161/auto.36293
Ahamed, 2008, DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells, Toxicol. Appl. Pharmacol., 233, 404, 10.1016/j.taap.2008.09.015
Gurunathan, 2013, Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells, Int. J. Nanomed., 8, 4399
Piao, 2011, Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis, Toxicol. Lett., 201, 92, 10.1016/j.toxlet.2010.12.010
Malvindi, 2015, Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol, Nanomedicine, 11, 731, 10.1016/j.nano.2014.11.002
Hatipoglu, 2015, Source of cytotoxicity in a colloidal silver nanoparticle suspension, Nanotechnology, 26, 195103, 10.1088/0957-4484/26/19/195103
Zuberek, 2015, Glucose availability determines silver nanoparticles toxicity in HepG2, J. Nanobiotechnol., 13, 72, 10.1186/s12951-015-0132-2
Lim, 2007, Design and synthesis of plasmonic magnetic nanoparticles, J. Magn. Magn. Mater., 311, 78, 10.1016/j.jmmm.2006.10.1169
Huang, 2008, Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods, Langmuir, 24, 11860, 10.1021/la801969c
Rai, 2010, Development and applications of photo-triggered theranostic agents, Adv. Drug Deliv. Rev., 62, 1094, 10.1016/j.addr.2010.09.002
Khlebtsov, 2011, Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis, ACS Nano, 5, 7077, 10.1021/nn2017974
Wang, 2012, Folic acid protected silver nanocarriers for targeted drug delivery, J. Biomed. Nanotechnol., 8, 751, 10.1166/jbn.2012.1437
Fang, 2012, Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers, Nanoscale, 4, 7012, 10.1039/c2nr32159a
Locatelli, 2012, Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma, Adv. Healthc. Mater., 1, 342, 10.1002/adhm.201100047
Menon, 2013, Nanomaterials for photo-based diagnostic and therapeutic applications, Theranostics, 3, 152, 10.7150/thno.5327
Wu, 2013, High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures, Analyst, 138, 6501, 10.1039/c3an01375h
Liu, 2013, Silver nanoparticles: A novel radiation sensitizer for glioma?, Nanoscale, 5, 11829, 10.1039/c3nr01351k
Kleinauskas, 2013, Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy, Nanotechnology, 24, 325103, 10.1088/0957-4484/24/32/325103
Potara, 2014, Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells, Mol. Pharmacol., 11, 391, 10.1021/mp400300m
Mukherjee, 2014, Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system), Theranostics, 4, 316, 10.7150/thno.7819
Yamada, 2015, Therapeutic gold, silver, and platinum nanoparticles, Wires Nanomed. Nanobiotechnol., 7, 428, 10.1002/wnan.1322
Kamaly, 2012, Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation, Chem. Soc. Rev., 41, 2971, 10.1039/c2cs15344k
Douillard, 2005, Sequential two-line strategy for stage IV non-small-cell lung cancer: Docetaxel-cisplatin versus vinorelbine-cisplatin followed by cross-over to single-agent docetaxel or vinorelbine at progression: Final results of a randomised phase II study, Ann. Oncol., 16, 81, 10.1093/annonc/mdi013
Singh, S., Chitkara, D., Mehrazin, R., Behrman, S.W., Wake, R.W., and Mahato, R.I. (2012). Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS ONE, 7.
Fanciullino, 2013, Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs, Crit. Rev. Oncol. Hematol., 88, 504, 10.1016/j.critrevonc.2013.06.010