Vai trò của sự phân cực đại thực bào ở người trong quá trình viêm trong các bệnh truyền nhiễm

International Journal of Molecular Sciences - Tập 19 Số 6 - Trang 1801
Chiraz Atri1,2,3, Fatma Z. Guerfali1,3, Dhafer Laouini1,3
1LR11IPT02 - Laboratoire de Transmission, Contrôle et Immunobiologie des Infections - Laboratory of Transmission, Control and Immunobiology of Infection (Tunisia)
2UCAR - Université de Carthage (Tunisie) (Avenue de la République, BP 77 - 1054 Amilcar - Tunisia)
3UTM - Université de Tunis El Manar (Campus Universitaire Farhat Hached B.P. n° 94 - ROMMANA 1068 Tunis - Tunisia)

Tóm tắt

Các mô hình thí nghiệm thường là nền tảng cho các khuôn mẫu miễn dịch như sự phân cực M1/M2 của đại thực bào. Tuy nhiên, sự phân cực rõ rệt này trong các mô hình động vật không rõ ràng ở người, và ranh giới giữa các đại thực bào kiểu M1 và M2 thực sự được thể hiện dưới dạng một continuum, nơi mà các ranh giới vẫn chưa rõ ràng. Thực tế, các bệnh truyền nhiễm ở người được đặc trưng bởi sự quay vòng hoặc thường có một kiểu hình hỗn hợp giữa môi trường viêm pro-inflammatory (được chi phối bởi các cytokine interleukin (IL)-1β, IL-6, IL-12, IL-23 và Tumor Necrosis Factor (TNF)-α) và tổn thương mô do các đại thực bào được kích hoạt theo cách cổ điển (kiểu M1) và quá trình lành vết thương do các đại thực bào được kích hoạt theo chiều hướng khác (kiểu M2) diễn ra trong môi trường chống viêm (được chi phối bởi IL-10, yếu tố tăng trưởng chuyển đổi (TGF)-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, và CCL22). Bài đánh giá này làm nổi bật sự phức tạp của tình hình trong các bệnh truyền nhiễm bằng cách nhấn mạnh vào continuum giữa các cực M1 và M2. Đầu tiên, chúng tôi thảo luận về sinh học cơ bản của việc phân cực đại thực bào, chức năng và vai trò của nó trong quá trình viêm và sự giải quyết của nó. Thứ hai, chúng tôi thảo luận về sự liên quan của continuum phân cực đại thực bào trong các bệnh truyền nhiễm và bị bỏ quên, và khả năng can thiệp vào các trạng thái kích hoạt như một chiến lược điều trị đầy hứa hẹn trong việc điều trị các bệnh này.

Từ khóa


Tài liệu tham khảo

Nathan, 2008, Metchnikoff’s legacy in 2008, Nat. Immunol., 9, 695, 10.1038/ni0708-695

David, 1973, Lymphocyte mediators and cellular hypersensitivity, N. Engl. J. Med., 288, 143, 10.1056/NEJM197301182880311

Martinez, 2009, Alternative activation of macrophages: An immunologic functional perspective, Annu. Rev. Immunol., 27, 451, 10.1146/annurev.immunol.021908.132532

Duffield, 2013, Host responses in tissue repair and fibrosis, Annu. Rev. Pathol., 8, 241, 10.1146/annurev-pathol-020712-163930

Murray, 2017, Macrophage polarization, Annu. Rev. Physiol., 79, 541, 10.1146/annurev-physiol-022516-034339

Zhang, 2008, Macrophage activation by endogenous danger signals, J. Pathol., 214, 161, 10.1002/path.2284

Xu, 2013, Reversible differentiation of pro- and anti-inflammatory macrophages, Mol. Immunol., 53, 179, 10.1016/j.molimm.2012.07.005

Beyer, M., Mallmann, M.R., Xue, J., Staratschek-Jox, A., Vorholt, D., Krebs, W., Sommer, D., Sander, J., Mertens, C., and Nino-Castro, A. (2012). High-resolution transcriptome of human macrophages. PLoS ONE, 7.

Tarique, 2015, Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages, Am. J. Respir. Cell Mol. Biol., 53, 676, 10.1165/rcmb.2015-0012OC

Mantovani, 2004, The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol., 25, 677, 10.1016/j.it.2004.09.015

Vogel, 2014, Human macrophage polarization in vitro: Maturation and activation methods compared, Immunobiology, 219, 695, 10.1016/j.imbio.2014.05.002

Roussel, 2017, Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow, J. Leukoc. Biol., 102, 437, 10.1189/jlb.5MA1116-457R

Shiratori, 2017, THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro, Mol. Immunol., 88, 58, 10.1016/j.molimm.2017.05.027

Italiani, P., Mazza, E.M., Lucchesi, D., Cifola, I., Gemelli, C., Grande, A., Battaglia, C., Bicciato, S., and Boraschi, D. (2014). Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS ONE, 9.

Rackov, 2016, P21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β, J. Clin. Investig., 126, 3089, 10.1172/JCI83404

Suzuki, 2016, Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages, Immunol. Lett., 176, 18, 10.1016/j.imlet.2016.05.009

Hutchinson, 2011, Cutting edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients, J. Immunol., 187, 2072, 10.4049/jimmunol.1100762

Guo, 2017, Human regulatory macrophages are potent in suppression of the xenoimmune response via indoleamine-2,3-dioxygenase-involved mechanism(s), Xenotransplantation, 24, e12326, 10.1111/xen.12326

Riquelme, 2017, DHRS9 is a stable marker of human regulatory macrophages, Transplantation, 101, 2731, 10.1097/TP.0000000000001814

Erbel, 2015, CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo, Innate Immun., 21, 255, 10.1177/1753425914526461

Boyle, 2012, Activating transcription factor 1 directs mhem atheroprotective macrophages through coordinated iron handling and foam cell protection, Circ. Res., 110, 20, 10.1161/CIRCRESAHA.111.247577

Boyle, 2009, Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype, Am. J. Pathol., 174, 1097, 10.2353/ajpath.2009.080431

Verreck, 2004, Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proc. Natl. Acad. Sci. USA, 101, 4560, 10.1073/pnas.0400983101

Verreck, 2006, Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40L-mediated costimulation, J. Leukoc. Biol., 79, 285, 10.1189/jlb.0105015

Martinez, 2006, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression, J. Immunol., 177, 7303, 10.4049/jimmunol.177.10.7303

Jaguin, 2013, Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin, Cell Immunol., 281, 51, 10.1016/j.cellimm.2013.01.010

Vogel, 2013, Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status, J. Neuroinflamm., 10, 809, 10.1186/1742-2094-10-35

Ambarus, 2012, Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis, Arthritis Res. Ther., 14, R74, 10.1186/ar3796

Durafourt, 2012, Comparison of polarization properties of human adult microglia and blood-derived macrophages, Glia, 60, 717, 10.1002/glia.22298

Barros, M.H., Hauck, F., Dreyer, J.H., Kempkes, B., and Niedobitek, G. (2013). Macrophage polarisation: An immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE, 8.

Iqbal, 2015, Characterization of in vitro generated human polarized macrophages, J. Clin. Cell Immunol., 6, 380, 10.4172/2155-9899.1000380

Duluc, 2007, Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, 110, 4319, 10.1182/blood-2007-02-072587

Pannellini, 2004, The expression of LEC/CCL16, a powerful inflammatory chemokine, is upregulated in ulcerative colitis, Int. J. Immunopathol. Pharmacol., 17, 171, 10.1177/039463200401700209

Sunakawa, 2015, Variations in genes regulating tumor-associated macrophages (TAMs) to predict outcomes of bevacizumab-based treatment in patients with metastatic colorectal cancer: Results from tribe and fire3 trials, Ann. Oncol., 26, 2450, 10.1093/annonc/mdv474

Wu, 2012, Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer, J. Surg. Oncol., 106, 462, 10.1002/jso.23110

Schraufstatter, 2012, The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum, Immunology, 135, 287, 10.1111/j.1365-2567.2011.03541.x

Zhang, 2011, M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma, Clinics, 66, 1879, 10.1590/S1807-59322011001100006

Bogels, 2012, Carcinoma origin dictates differential skewing of monocyte function, Oncoimmunology, 1, 798, 10.4161/onci.20427

Yuan, 2015, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression, Sci. Rep., 5, 14273, 10.1038/srep14273

Patel, 2017, Macrophage polarization in response to epigenetic modifiers during infection and inflammation, Drug Discov. Today, 22, 186, 10.1016/j.drudis.2016.08.006

Madore, 2010, Alveolar macrophages in allergic asthma: An expression signature characterized by heat shock protein pathways, Hum. Immunol., 71, 144, 10.1016/j.humimm.2009.11.005

Shaykhiev, 2009, Smoking-dependent reprogramming of alveolar macrophage polarization: Implication for pathogenesis of chronic obstructive pulmonary disease, J. Immunol., 183, 2867, 10.4049/jimmunol.0900473

Stoger, 2012, Distribution of macrophage polarization markers in human atherosclerosis, Atherosclerosis, 225, 461, 10.1016/j.atherosclerosis.2012.09.013

Fukui, 2017, M1 and M2 monocytes in rheumatoid arthritis: A contribution of imbalance of M1/M2 monocytes to osteoclastogenesis, Front. Immunol., 8, 1958, 10.3389/fimmu.2017.01958

Arnold, 2007, Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med., 204, 1057, 10.1084/jem.20070075

Ren, 2017, Immune evasion strategies of pathogens in macrophages: The potential for limiting pathogen transmission, Curr. Issues Mol. Biol., 21, 21

Chandra, 2013, Human il10 gene repression by rev-erbalpha ameliorates mycobacterium tuberculosis clearance, J. Biol. Chem., 288, 10692, 10.1074/jbc.M113.455915

Ting, 1999, Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1, J. Immunol., 163, 3898, 10.4049/jimmunol.163.7.3898

Tang, Y., Hua, S.C., Qin, G.X., Xu, L.J., and Jiang, Y.F. (2014). Different subsets of macrophages in patients with new onset tuberculous pleural effusion. PLoS ONE, 9.

Mattila, 2013, Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms, J. Immunol., 191, 773, 10.4049/jimmunol.1300113

Huang, Z., Luo, Q., Guo, Y., Chen, J., Xiong, G., Peng, Y., Ye, J., and Li, J. (2015). Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS ONE, 10.

Quiding-Jarbrink, M., Raghavan, S., and Sundquist, M. (2010). Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice. PLoS ONE, 5.

Fehlings, 2012, Comparative analysis of the interaction of helicobacter pylori with human dendritic cells, macrophages, and monocytes, Infect. Immun., 80, 2724, 10.1128/IAI.00381-12

Saliba, 2016, Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular salmonella, Nat. Microbiol., 2, 16206, 10.1038/nmicrobiol.2016.206

Thompson, 2009, Transcriptional response in the peripheral blood of patients infected with salmonella enterica serovar typhi, Proc. Natl. Acad. Sci. USA, 106, 22433, 10.1073/pnas.0912386106

Corbi, 2014, Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to candida albicans, Proteomics, 14, 1503, 10.1002/pmic.201300508

Wagener, 2017, Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions, MBio, 8, e01820-16, 10.1128/mBio.01820-16

Cassol, 2010, Macrophage polarization and HIV-1 infection, J. Leukoc. Biol., 87, 599, 10.1189/jlb.1009673

Brockman, 2009, IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells, Blood, 114, 346, 10.1182/blood-2008-12-191296

Flynn, 2011, Early IL-10 predominant responses are associated with progression to chronic hepatitis C virus infection in injecting drug users, J. Viral. Hepat., 18, 549, 10.1111/j.1365-2893.2010.01335.x

Zhang, 2016, HCV core protein inhibits polarization and activity of both M1 and M2 macrophages through the TLR2 signaling pathway, Sci. Rep., 6, 36160, 10.1038/srep36160

Saha, 2016, Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-β, Cell. Mol. Gastroenterol. Hepatol., 2, 302, 10.1016/j.jcmgh.2015.12.005

Hoeve, M.A., Nash, A.A., Jackson, D., Randall, R.E., and Dransfield, I. (2012). Influenza virus a infection of human monocyte and macrophage subpopulations reveals increased susceptibility associated with cell differentiation. PLoS ONE, 7.

Zhang, N., Bao, Y.J., Tong, A.H., Zuyderduyn, S., Bader, G.D., Malik Peiris, J.S., Lok, S., and Lee, S.M. (2018). Whole transcriptome analysis reveals differential gene expression profile reflecting macrophage polarization in response to influenza a H5N1 virus infection. BMC Med. Genom., 11.

Chan, 2008, Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage, J. Immunol., 181, 698, 10.4049/jimmunol.181.1.698

Chan, 2012, Human cytomegalovirus stimulates monocyte-to-macrophage differentiation via the temporal regulation of caspase 3, J. Virol., 86, 10714, 10.1128/JVI.07129-11

Avdic, 2013, Human cytomegalovirus interleukin-10 polarizes monocytes toward a deactivated M2c phenotype to repress host immune responses, J. Virol., 87, 10273, 10.1128/JVI.00912-13

Poglitsch, 2012, CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages, Am. J. Transplant., 12, 1458, 10.1111/j.1600-6143.2012.04002.x

Cassol, 2009, M1 and M2A polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms, J. Immunol., 182, 6237, 10.4049/jimmunol.0803447

Herbein, 2010, The macrophage in HIV-1 infection: From activation to deactivation?, Retrovirology, 7, 33, 10.1186/1742-4690-7-33

Liu, 2014, Macrophage polarization in inflammatory diseases, Int. J. Biol. Sci., 10, 520, 10.7150/ijbs.8879

Almeida, 2018, Modulation of human macrophage activity by ascaris antigens is dependent on macrophage polarization state, Immunobiology, 223, 405, 10.1016/j.imbio.2017.11.003

Kimutai, 2009, Leishmaniasis in northern and western africa: A review, Afr. J. Infect. Dis., 3, 14

Louzir, 2013, [leishmania epidemiology, diagnosis, chemotherapy and vaccination approaches in the international network of pasteur institutes], Med. Sci., 29, 1151

Olivier, 2005, Subversion mechanisms by which leishmania parasites can escape the host immune response: A signaling point of view, Clin. Microbiol. Rev., 18, 293, 10.1128/CMR.18.2.293-305.2005

Kropf, 2005, Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo, FASEB J., 19, 1000, 10.1096/fj.04-3416fje

Guerfali, F.Z., Laouini, D., Guizani-Tabbane, L., Ottones, F., Ben-Aissa, K., Benkahla, A., Manchon, L., Piquemal, D., Smandi, S., and Mghirbi, O. (2008). Simultaneous gene expression profiling in human macrophages infected with leishmania major parasites using sage. BMC Genom., 9.

Murray, 2011, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol., 11, 723, 10.1038/nri3073

Liu, 2012, The early interaction of leishmania with macrophages and dendritic cells and its influence on the host immune response, Front. Cell. Infect. Microbiol., 2, 83, 10.3389/fcimb.2012.00083

Muraille, 2014, TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism?, Front. Immunol., 5, 603, 10.3389/fimmu.2014.00603

Maspi, 2016, Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review, Pathog. Glob. Health, 110, 247, 10.1080/20477724.2016.1232042

Farrow, 2011, Leishmania-induced repression of selected non-coding RNA genes containing B-box element at their promoters in alternatively polarized M2 macrophages, Mol. Cell. Biochem., 350, 47, 10.1007/s11010-010-0681-5

Mukhopadhyay, D., Mukherjee, S., Roy, S., Dalton, J.E., Kundu, S., Sarkar, A., Das, N.K., Kaye, P.M., and Chatterjee, M. (2015). M2 polarization of monocytes-macrophages is a hallmark of indian post kala-azar dermal leishmaniasis. PLoS Negl. Trop. Dis., 9.

Kong, F., Saldarriaga, O.A., Spratt, H., Osorio, E.Y., Travi, B.L., Luxon, B.A., and Melby, P.C. (2017). Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype. PLoS Pathog., 13.