Bệnh sinh học của Đái tháo đường loại 2
Tóm tắt
Đái tháo đường loại 2 (T2DM), một trong những rối loạn chuyển hóa phổ biến nhất, được gây ra bởi sự kết hợp của hai yếu tố chính: sự tiết insulin bị lỗi bởi các tế bào β tụy và khả năng đáp ứng không đầy đủ của các mô nhạy cảm với insulin. Vì sự phóng thích và hoạt động của insulin là các quá trình thiết yếu cho sự cân bằng glucose, các cơ chế phân tử liên quan đến việc tổng hợp và phóng thích insulin, cũng như trong việc phát hiện insulin được điều chỉnh một cách chặt chẽ. Sự thiếu hụt trong bất kỳ cơ chế nào liên quan đến các quá trình này có thể dẫn đến sự mất cân bằng chuyển hóa chịu trách nhiệm cho sự phát triển của bệnh. Bài tổng quan này phân tích các khía cạnh chính của T2DM, cũng như các cơ chế và con đường phân tử liên quan đến chuyển hóa insulin dẫn đến T2DM và kháng insulin. Để thực hiện điều đó, chúng tôi tóm tắt các dữ liệu thu thập được cho đến nay, tập trung đặc biệt vào sự tổng hợp insulin, phóng thích insulin, nhận diện insulin và các tác động sau đó đến các cơ quan nhạy cảm với insulin riêng lẻ. Bài tổng quan cũng đề cập đến các tình trạng bệnh lý kéo dài T2DM như các yếu tố dinh dưỡng, hoạt động thể chất, rối loạn vi sinh vật đường ruột và trí nhớ chuyển hóa. Thêm vào đó, vì T2DM liên quan đến sự phát triển xơ vữa động mạch gia tốc, chúng tôi xem xét một số cơ chế phân tử liên kết T2DM và kháng insulin (IR) cũng như nguy cơ tim mạch như một trong những biến chứng quan trọng nhất trong T2DM.
Từ khóa
Tài liệu tham khảo
Stumvoll, 2005, Type 2 diabetes: Principles of pathogenesis and therapy, Lancet, 365, 1333, 10.1016/S0140-6736(05)61032-X
Weyer, 1999, The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus, J. Clin. Investig., 104, 787, 10.1172/JCI7231
NCD Risk Factor Collaboration (2016). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387, 1513–1530.
Defronzo, 2009, From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus, Diabetes, 58, 773, 10.2337/db09-9028
Schwartz, 2016, The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the beta-Cell-Centric Classification Schema, Diabetes Care, 39, 179, 10.2337/dc15-1585
Gaede, 2003, Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes, N. Engl. J. Med., 348, 383, 10.1056/NEJMoa021778
Sarwar, 2010, Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies, Lancet, 375, 2215, 10.1016/S0140-6736(10)60484-9
Grarup, 2014, Genetic susceptibility to type 2 diabetes and obesity: From genome-wide association studies to rare variants and beyond, Diabetologia, 57, 1528, 10.1007/s00125-014-3270-4
Wong, 2016, Cardiovascular Risk Factor Targets and Cardiovascular Disease Event Risk in Diabetes: A Pooling Project of the Atherosclerosis Risk in Communities Study, Multi-Ethnic Study of Atherosclerosis, and Jackson Heart Study, Diabetes Care, 39, 668, 10.2337/dc15-2439
Hu, 2001, Diet, lifestyle, and the risk of type 2 diabetes mellitus in women, N. Engl. J. Med., 345, 790, 10.1056/NEJMoa010492
Schellenberg, 2013, Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis, Ann. Intern. Med., 159, 543, 10.7326/0003-4819-159-8-201310150-00007
Chan, 1993, Obesity, albuminuria and hypertension among Hong Kong Chinese with non-insulin-dependent diabetes mellitus (NIDDM), Postgrad. Med. J., 69, 204, 10.1136/pgmj.69.809.204
Dabelea, 2009, Search for Diabetes in Navajo youth: Prevalence, incidence, and clinical characteristics: The Search for Diabetes in Youth Study, Diabetes Care, 32, S141, 10.2337/dc09-S206
Liu, 2009, Type 1 and Type 2 diabetes in Asian and Pacific Islander U.S. youth: The SEARCH for Diabetes in Youth Study, Diabetes Care, 32, S133, 10.2337/dc09-S205
Karter, 2013, Elevated rates of diabetes in Pacific Islanders and Asian subgroups: The Diabetes Study of Northern California (DISTANCE), Diabetes Care, 36, 574, 10.2337/dc12-0722
Sattar, 2015, Type 2 diabetes in migrant south Asians: Mechanisms, mitigation, and management, Lancet Diabetes Endocrinol., 3, 1004, 10.1016/S2213-8587(15)00326-5
McKeigue, 1991, Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians, Lancet, 337, 382, 10.1016/0140-6736(91)91164-P
Haines, 2007, Rising incidence of type 2 diabetes in children in the U.K, Diabetes Care, 30, 1097, 10.2337/dc06-1813
Fuchsberger, 2016, The genetic architecture of type 2 diabetes, Nature, 536, 41, 10.1038/nature18642
McCarthy, 2010, Genomics, type 2 diabetes, and obesity, N. Engl. J. Med., 363, 2339, 10.1056/NEJMra0906948
Dimas, 2014, Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity, Diabetes, 63, 2158, 10.2337/db13-0949
Flannick, 2016, Type 2 diabetes: Genetic data sharing to advance complex disease research, Nat. Rev. Genet., 17, 535, 10.1038/nrg.2016.56
Franks, 2013, Gene-environment and gene-treatment interactions in type 2 diabetes: Progress, pitfalls, and prospects, Diabetes Care, 36, 1413, 10.2337/dc12-2211
Bellou, V., Belbasis, L., Tzoulaki, I., and Evangelou, E. (2018). Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE, 13.
Carey, 1997, Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study, Am. J. Epidemiol., 145, 614, 10.1093/oxfordjournals.aje.a009158
Sinha, 2002, Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: Relationships to insulin sensitivity, total body fat, and central adiposity, Diabetes, 51, 1022, 10.2337/diabetes.51.4.1022
Hillier, 2003, Complications in young adults with early-onset type 2 diabetes: Losing the relative protection of youth, Diabetes Care, 26, 2999, 10.2337/diacare.26.11.2999
Weinstein, 2004, Relationship of physical activity vs body mass index with type 2 diabetes in women, JAMA, 292, 1188, 10.1001/jama.292.10.1188
Lynch, 1996, Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men, Arch. Intern. Med., 156, 1307, 10.1001/archinte.1996.00440110073010
Venkatasamy, 2013, Effect of Physical activity on Insulin Resistance, Inflammation and Oxidative Stress in Diabetes Mellitus, J. Clin. Diagn. Res., 7, 1764
Strasser, 2013, Physical activity in obesity and metabolic syndrome, Ann. N. Y. Acad. Sci., 1281, 141, 10.1111/j.1749-6632.2012.06785.x
Ross, 2003, Does exercise without weight loss improve insulin sensitivity?, Diabetes Care, 26, 944, 10.2337/diacare.26.3.944
Cerf, 2013, Beta cell dysfunction and insulin resistance, Front. Endocrinol. (Lausanne), 4, 37, 10.3389/fendo.2013.00037
Zheng, 2018, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications, Nat. Rev. Endocrinol., 14, 88, 10.1038/nrendo.2017.151
Bunney, 2017, Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet, Physiol. Behav., 176, 139, 10.1016/j.physbeh.2017.03.040
Fu, 2013, Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes, Curr. Diabetes Rev., 9, 25, 10.2174/157339913804143225
Halban, 1994, Proinsulin processing in the regulated and the constitutive secretory pathway, Diabetologia, 37, S65, 10.1007/BF00400828
Boland, 2017, The dynamic plasticity of insulin production in beta-cells, Mol. Metab., 6, 958, 10.1016/j.molmet.2017.04.010
Rorsman, 2018, Pancreatic beta-Cell Electrical Activity and Insulin Secretion: Of Mice and Men, Physiol. Rev., 98, 117, 10.1152/physrev.00008.2017
Seino, 2011, Dynamics of insulin secretion and the clinical implications for obesity and diabetes, J. Clin. Investig., 121, 2118, 10.1172/JCI45680
Islam, 2002, The ryanodine receptor calcium channel of beta-cells: Molecular regulation and physiological significance, Diabetes, 51, 1299, 10.2337/diabetes.51.5.1299
Cuinas, 2016, Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction, Life Sci., 155, 102, 10.1016/j.lfs.2016.03.059
Lustig, 1993, Expression cloning of an ATP receptor from mouse neuroblastoma cells, Proc. Natl. Acad. Sci. USA, 90, 5113, 10.1073/pnas.90.11.5113
Simon, 1995, Characterisation of a recombinant P2Y purinoceptor, Eur. J. Pharmacol., 291, 281, 10.1016/0922-4106(95)90068-3
Valera, 1994, A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature, 371, 516, 10.1038/371516a0
Blachier, 1988, Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells, Biochim. Biophys. Acta, 970, 222, 10.1016/0167-4889(88)90182-6
Li, 1991, Extracellular ATP causes Ca2(+)− dependent and -independent insulin secretion in RINm5F cells. Phospholipase C mediates Ca2+ mobilization but not Ca2+ influx and membrane depolarization, J. Biol. Chem., 266, 3449, 10.1016/S0021-9258(19)67816-6
Christensen, 2019, The Beta Cell in Type 2 Diabetes, Curr. Diabetes Rep., 19, 81, 10.1007/s11892-019-1196-4
Halban, 2014, beta-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment, Diabetes Care, 37, 1751, 10.2337/dc14-0396
Yamamoto, 2019, Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic beta cell, J. Biol. Chem., 294, 168, 10.1074/jbc.RA118.005683
Thorn, 2015, Insulin secretion from beta cells within intact islets: Location matters, Clin. Exp. Pharmacol. Physiol., 42, 406, 10.1111/1440-1681.12368
Liu, 2018, Biosynthesis, structure, and folding of the insulin precursor protein, Diabetes Obes. Metab., 20, 28, 10.1111/dom.13378
Mecili, 2013, Metabolic inflammation: Connecting obesity and insulin resistance, Ann. Med., 45, 242, 10.3109/07853890.2012.705015
Hummasti, 2010, Endoplasmic reticulum stress and inflammation in obesity and diabetes, Circ. Res., 107, 579, 10.1161/CIRCRESAHA.110.225698
Roca-Rivada, A., Castelao, C., Senin, L.L., Landrove, M.O., Baltar, J., Belen Crujeiras, A., Seoane, L.M., Casanueva, F.F., and Pardo, M. (2013). FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE, 8.
Giacco, 2010, Oxidative stress and diabetic complications, Circ. Res., 107, 1058, 10.1161/CIRCRESAHA.110.223545
Graciano, 2011, Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets, Islets, 3, 213, 10.4161/isl.3.5.15935
Esser, 2014, Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes, Diabetes Res. Clin. Pract., 105, 141, 10.1016/j.diabres.2014.04.006
Pradhan, 2001, C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus, JAMA, 286, 327, 10.1001/jama.286.3.327
Vandanmagsar, 2011, The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nat. Med., 17, 179, 10.1038/nm.2279
Association, 2019, Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019, Diabetes Care, 42, S29, 10.2337/dc19-S003
Shamsuzzaman, 2004, Independent association between plasma leptin and C-reactive protein in healthy humans, Circulation, 109, 2181, 10.1161/01.CIR.0000127960.28627.75
Leeuwenburgh, 1994, Aging and exercise training in skeletal muscle: Responses of glutathione and antioxidant enzyme systems, Am. J. Physiol., 267, R439
Polak, 2017, New markers of insulin resistance in polycystic ovary syndrome, J. Endocrinol. Investig., 40, 1, 10.1007/s40618-016-0523-8
Bostrom, 2012, A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis, Nature, 481, 463, 10.1038/nature10777
Handschin, 2008, The role of exercise and PGC1alpha in inflammation and chronic disease, Nature, 454, 463, 10.1038/nature07206
Park, 2013, Circulating irisin in relation to insulin resistance and the metabolic syndrome, J. Clin. Endocrinol. Metab., 98, 4899, 10.1210/jc.2013-2373
Ibrahim, 2018, Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus, Diabetes Metab. Syndr., 12, 643, 10.1016/j.dsx.2018.04.025
Lynch, 2016, The Human Intestinal Microbiome in Health and Disease, N. Engl. J. Med., 375, 2369, 10.1056/NEJMra1600266
Kasper, 2014, Gut microbiome and the risk factors in central nervous system autoimmunity, FEBS Lett., 588, 4214, 10.1016/j.febslet.2014.09.024
Scarpellini, 2012, Obesity and metabolic syndrome: An inflammatory condition, Dig. Dis., 30, 148, 10.1159/000336664
Biagi, 2012, Aging of the human metaorganism: The microbial counterpart, Age (Dordrecht), 34, 247, 10.1007/s11357-011-9217-5
Sircana, 2018, Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence?, Curr. Diabetes Rep., 18, 98, 10.1007/s11892-018-1057-6
Li, 2017, Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases, Front. Immunol., 8, 1882, 10.3389/fimmu.2017.01882
Cani, 2007, Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, 56, 1761, 10.2337/db06-1491
Tan, 2014, The role of short-chain fatty acids in health and disease, Adv. Immunol., 121, 91, 10.1016/B978-0-12-800100-4.00003-9
Tang, 2015, Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes, Nat. Med., 21, 173, 10.1038/nm.3779
Neis, 2015, The role of microbial amino acid metabolism in host metabolism, Nutrients, 7, 2930, 10.3390/nu7042930
Shan, 2017, Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes, Am. J. Clin. Nutr., 106, 888, 10.3945/ajcn.117.157107
Turner, 1999, Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: Progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group, JAMA, 281, 2005, 10.1001/jama.281.21.2005
Gaede, 2003, The Steno-2 study. Intensive multifactorial intervention reduces the occurrence of cardiovascular disease in patients with type 2 diabetes, Ugeskr. Laeger., 165, 2658
Holman, 2008, 10-year follow-up of intensive glucose control in type 2 diabetes, N. Engl. J. Med., 359, 1577, 10.1056/NEJMoa0806470
Ihnat, 2007, Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling, Diabetologia, 50, 1523, 10.1007/s00125-007-0684-2
Ceriello, 2009, Clinical review 2: The “metabolic memory”: Is more than just tight glucose control necessary to prevent diabetic complications?, J. Clin. Endocrinol. Metab., 94, 410, 10.1210/jc.2008-1824
Olsen, 2012, Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression, Diabetes, 61, 485, 10.2337/db11-0588
Simmons, 2008, Epigenetic Influences and Disease, Nat. Educ., 1, 6
Rosen, 2018, Epigenetics and Epigenomics: Implications for Diabetes and Obesity, Diabetes, 67, 1923, 10.2337/db18-0537
Wahid, 2010, MicroRNAs: Synthesis, mechanism, function, and recent clinical trials, Biochim. Biophys. Acta, 1803, 1231, 10.1016/j.bbamcr.2010.06.013
LaPierre, 2017, MicroRNAs as stress regulators in pancreatic beta cells and diabetes, Mol. Metab., 6, 1010, 10.1016/j.molmet.2017.06.020
Esguerra, 2018, MicroRNAs in islet hormone secretion, Diabetes Obes. Metab., 20, 11, 10.1111/dom.13382
Ofori, 2017, Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell, Sci. Rep., 7, 44986, 10.1038/srep44986
Latreille, 2014, MicroRNA-7a regulates pancreatic beta cell function, J. Clin. Investig., 124, 2722, 10.1172/JCI73066
Poy, 2009, miR-375 maintains normal pancreatic alpha- and beta-cell mass, Proc. Natl. Acad. Sci. USA, 106, 5813, 10.1073/pnas.0810550106
Latreille, 2015, miR-375 gene dosage in pancreatic beta-cells: Implications for regulation of beta-cell mass and biomarker development, J. Mol. Med. (Berl.), 93, 1159, 10.1007/s00109-015-1296-9
Reddy, 2015, Epigenetic mechanisms in diabetic complications and metabolic memory, Diabetologia, 58, 443, 10.1007/s00125-014-3462-y
Blomen, 2011, Stable transmission of reversible modifications: Maintenance of epigenetic information through the cell cycle, Cell. Mol. Life Sci., 68, 27, 10.1007/s00018-010-0505-5
Bogdanovic, 2009, DNA methylation and methyl-CpG binding proteins: Developmental requirements and function, Chromosoma, 118, 549, 10.1007/s00412-009-0221-9
Mosammaparast, 2010, Reversal of histone methylation: Biochemical and molecular mechanisms of histone demethylases, Annu. Rev. Biochem., 79, 155, 10.1146/annurev.biochem.78.070907.103946
Breving, 2010, The complexities of microRNA regulation: Mirandering around the rules, Int. J. Biochem. Cell. Biol., 42, 1316, 10.1016/j.biocel.2009.09.016
Brasacchio, 2009, Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail, Diabetes, 58, 1229, 10.2337/db08-1666
Miao, 2004, In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions, J. Biol. Chem., 279, 18091, 10.1074/jbc.M311786200
Reddy, 2011, Epigenetic mechanisms in diabetic vascular complications, Cardiovasc. Res., 90, 421, 10.1093/cvr/cvr024
Karnib, 2016, Epigenetic changes in diabetes, Neurosci. Lett., 625, 64, 10.1016/j.neulet.2016.04.046
Nishikawa, 2000, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature, 404, 787, 10.1038/35008121
Kowluru, 2007, Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries, Exp. Diabetes Res., 2007, 21976, 10.1155/2007/21976
Kowluru, 2004, Reversal of hyperglycemia and diabetic nephropathy: Effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats, J. Diabetes Complicat., 18, 282, 10.1016/j.jdiacomp.2004.03.002
Thompson, 2013, Potential role of Toll-like receptors in programming of vascular dysfunction, Clin. Sci. (Lond.), 125, 19, 10.1042/CS20120673
Guarner, 2015, Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease, Interdiscip. Top Gerontol., 40, 99
Kim, 2008, Role of mitochondrial dysfunction in insulin resistance, Circ. Res., 102, 401, 10.1161/CIRCRESAHA.107.165472
Stump, 2003, Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts, Proc. Natl. Acad. Sci. USA, 100, 7996, 10.1073/pnas.1332551100
Petersen, 2003, Mitochondrial dysfunction in the elderly: Possible role in insulin resistance, Science, 300, 1140, 10.1126/science.1082889
Sazanov, 2015, A giant molecular proton pump: Structure and mechanism of respiratory complex I, Nat. Rev. Mol. Cell. Biol., 16, 375, 10.1038/nrm3997
Spinelli, 2018, The multifaceted contributions of mitochondria to cellular metabolism, Nat. Cell. Biol., 20, 745, 10.1038/s41556-018-0124-1
Shigenaga, 1994, Oxidative damage and mitochondrial decay in aging, Proc. Natl. Acad. Sci. USA, 91, 10771, 10.1073/pnas.91.23.10771
Sergi, 2019, Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet, Front. Physiol., 10, 532, 10.3389/fphys.2019.00532
Kelley, 1999, Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss, Am. J. Physiol., 277, E1130
Simoneau, 1999, Markers of capacity to utilize fatty acids in human skeletal muscle: Relation to insulin resistance and obesity and effects of weight loss, FASEB J., 13, 2051, 10.1096/fasebj.13.14.2051
Kim, 2000, Lipid oxidation is reduced in obese human skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 279, E1039, 10.1152/ajpendo.2000.279.5.E1039
Mootha, 2003, PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet., 34, 267, 10.1038/ng1180
Patti, 2003, Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1, Proc. Natl. Acad. Sci. USA, 100, 8466, 10.1073/pnas.1032913100
Kooi, 2007, Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects, Diabetologia, 50, 113, 10.1007/s00125-006-0475-1
Phielix, 2008, Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients, Diabetes, 57, 2943, 10.2337/db08-0391
Schieber, 2014, ROS function in redox signaling and oxidative stress, Curr. Biol., 24, R453, 10.1016/j.cub.2014.03.034
Ezraty, 2017, Oxidative stress, protein damage and repair in bacteria, Nat. Rev. Microbiol., 15, 385, 10.1038/nrmicro.2017.26
Ceriello, 2012, The emerging challenge in diabetes: The “metabolic memory”, Vascul. Pharmacol., 57, 133, 10.1016/j.vph.2012.05.005
Johnson, 2012, The inflammation highway: Metabolism accelerates inflammatory traffic in obesity, Immunol. Rev., 249, 218, 10.1111/j.1600-065X.2012.01151.x
Schofield, J.H., and Schafer, Z.T. (2020). Mitochondrial Reactive Oxygen Species and Mitophagy: A Complex and Nuanced Relationship. Antioxid. Redox. Signal.
Montgomery, 2015, Mitochondrial dysfunction and insulin resistance: An update, Endocr. Connect., 4, R1, 10.1530/EC-14-0092
Chavez, 2012, A ceramide-centric view of insulin resistance, Cell. Metab., 15, 585, 10.1016/j.cmet.2012.04.002
Liang, 2006, PGC-1alpha: A key regulator of energy metabolism, Adv. Physiol. Educ., 30, 145, 10.1152/advan.00052.2006
Bach, 2005, Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: Effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6, Diabetes, 54, 2685, 10.2337/diabetes.54.9.2685
Novak, 2012, Mitophagy: A complex mechanism of mitochondrial removal, Antioxid. Redox. Signal, 17, 794, 10.1089/ars.2011.4407
Wei, 2015, Selective removal of mitochondria via mitophagy: Distinct pathways for different mitochondrial stresses, Biochim. Biophys. Acta, 1853, 2784, 10.1016/j.bbamcr.2015.03.013
Ding, 2012, Mitophagy: Mechanisms, pathophysiological roles, and analysis, Biol. Chem., 393, 547, 10.1515/hsz-2012-0119
Westermann, 2010, Mitochondrial fusion and fission in cell life and death, Nat. Rev. Mol. Cell. Biol., 11, 872, 10.1038/nrm3013
Yang, 2010, Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance, Cell. Metab., 11, 467, 10.1016/j.cmet.2010.04.005
Quiros, 2012, Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice, EMBO J., 31, 2117, 10.1038/emboj.2012.70
Sebastian, 2012, Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis, Proc. Natl. Acad. Sci. USA, 109, 5523, 10.1073/pnas.1108220109
Jheng, 2012, Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle, Mol. Cell. Biol., 32, 309, 10.1128/MCB.05603-11
Lin, 2018, The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species, Oxid. Med. Cell. Longev., 2018, 7514383, 10.1155/2018/7514383
Lionetti, L., Mollica, M.P., Donizzetti, I., Gifuni, G., Sica, R., Pignalosa, A., Cavaliere, G., Gaita, M., De Filippo, C., and Zorzano, A. (2014). High-lard and high-fish-oil diets differ in their effects on function and dynamic behaviour of rat hepatic mitochondria. PLoS ONE, 9.
Kadowaki, 1994, A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA, N. Engl. J. Med., 330, 962, 10.1056/NEJM199404073301403
Yang, 2012, Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes, Mol. Endocrinol., 26, 1203, 10.1210/me.2012-1004
Tawata, 2000, A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes, Diabetes, 49, 1269, 10.2337/diabetes.49.7.1269
Wang, 2001, Association of the mitochondrial DNA 5178A/C polymorphism with maternal inheritance and onset of type 2 diabetes in Japanese patients, Exp. Clin. Endocrinol. Diabetes, 109, 361, 10.1055/s-2001-17407
Tawata, 1998, New mitochondrial DNA homoplasmic mutations associated with Japanese patients with type 2 diabetes, Diabetes, 47, 276, 10.2337/diab.47.2.276
Poulton, 2002, Type 2 diabetes is associated with a common mitochondrial variant: Evidence from a population-based case-control study, Hum. Mol. Genet., 11, 1581, 10.1093/hmg/11.13.1581
Tang, 2006, Variation of mitochondrial gene and the association with type 2 diabetes mellitus in a Chinese population, Diabetes Res. Clin. Pract., 73, 77, 10.1016/j.diabres.2005.12.001
Czech, 2017, Insulin action and resistance in obesity and type 2 diabetes, Nat. Med., 23, 804, 10.1038/nm.4350
Pearson, 2016, The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans, Bull. Math. Biol., 78, 1189, 10.1007/s11538-016-0181-1
Wilcox, 2005, Insulin and insulin resistance, Clin. Biochem. Rev., 26, 19
Nussey, S., and Whitehead, S. (2001). Endocrinology: An Integrated Approach, BIOS Scientific Publishers.
Petersen, 2002, Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus, Am. J. Cardiol., 90, 11G, 10.1016/S0002-9149(02)02554-7
Petersen, 2002, Cellular mechanism of insulin resistance in skeletal muscle, J. R Soc. Med., 95, 8
Satoh, 2014, Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes, Int. J. Mol. Sci., 15, 18677, 10.3390/ijms151018677
DeFronzo, 1988, Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM, Diabetes, 37, 667, 10.2337/diab.37.6.667
DeFronzo, 2010, Pathogenesis of insulin resistance in skeletal muscle, J. Biomed. Biotechnol., 2010, 476279
Wu, 2017, Skeletal muscle inflammation and insulin resistance in obesity, J. Clin. Investig., 127, 43, 10.1172/JCI88880
Coelho, 2013, Biochemistry of adipose tissue: An endocrine organ, Arch. Med. Sci., 9, 191, 10.5114/aoms.2013.33181
Rosen, 2006, Adipocytes as regulators of energy balance and glucose homeostasis, Nature, 444, 847, 10.1038/nature05483
Gastaldelli, 2017, Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study, Diabetes, 66, 815, 10.2337/db16-1167
Czech, 2020, Mechanisms of insulin resistance related to white, beige, and brown adipocytes, Mol. Metab., 34, 27, 10.1016/j.molmet.2019.12.014
Scherer, 2019, The many secret lives of adipocytes: Implications for diabetes, Diabetologia, 62, 223, 10.1007/s00125-018-4777-x
Maki, 2011, Validation of insulin sensitivity and secretion indices derived from the liquid meal tolerance test, Diabetes Technol. Ther., 13, 661, 10.1089/dia.2010.0240
Titchenell, 2017, Unraveling the Regulation of Hepatic Metabolism by Insulin, Trends Endocrinol. Metab., 28, 497, 10.1016/j.tem.2017.03.003
Cherrington, 2007, Insulin action on the liver in vivo, Biochem. Soc. Trans., 35, 1171, 10.1042/BST0351171
Edgerton, 2006, Insulin’s direct effects on the liver dominate the control of hepatic glucose production, J. Clin. Investig., 116, 521, 10.1172/JCI27073
Oh, 2013, CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis, BMB Rep., 46, 567, 10.5483/BMBRep.2013.46.12.248
Montal, 2015, PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth, Mol. Cell., 60, 571, 10.1016/j.molcel.2015.09.025
Leclercq, 2007, Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences, J. Hepatol., 47, 142, 10.1016/j.jhep.2007.04.002
Meshkani, 2009, Hepatic insulin resistance, metabolic syndrome and cardiovascular disease, Clin. Biochem., 42, 1331, 10.1016/j.clinbiochem.2009.05.018
Gast, K.B., Tjeerdema, N., Stijnen, T., Smit, J.W., and Dekkers, O.M. (2012). Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS ONE, 7.
Haffner, 1998, Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction, N. Engl. J. Med., 339, 229, 10.1056/NEJM199807233390404
Beckman, 2002, Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management, JAMA, 287, 2570, 10.1001/jama.287.19.2570
Nesto, 2004, Correlation between cardiovascular disease and diabetes mellitus: Current concepts, Am. J. Med., 116, 11S, 10.1016/j.amjmed.2003.10.016
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 106, 3143–3421.
Reaven, 2012, Insulin resistance and coronary heart disease in nondiabetic individuals, Arterioscler. Thromb. Vasc. Biol., 32, 1754, 10.1161/ATVBAHA.111.241885
Bornfeldt, 2011, Insulin resistance, hyperglycemia, and atherosclerosis, Cell. Metab., 14, 575, 10.1016/j.cmet.2011.07.015
Davidson, 2009, Is hyperglycemia a causal factor in cardiovascular disease? Does proving this relationship really matter? Yes, Diabetes Care, 32, S331, 10.2337/dc09-S333
Laakso, 2014, Insulin resistance and hyperglycaemia in cardiovascular disease development, Nat. Rev. Endocrinol., 10, 293, 10.1038/nrendo.2014.29
Battisti, 2003, Dyslipidemia in patients with type 2 diabetes. relationships between lipids, kidney disease and cardiovascular disease, Clin. Chem. Lab. Med., 41, 1174, 10.1515/CCLM.2003.181
Lewis, 1996, Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state, Diabetes Care, 19, 390, 10.2337/diacare.19.4.390
Sparks, 2012, Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia, Arterioscler. Thromb. Vasc. Biol., 32, 2104, 10.1161/ATVBAHA.111.241463
Verges, 2015, Pathophysiology of diabetic dyslipidaemia: Where are we?, Diabetologia, 58, 886, 10.1007/s00125-015-3525-8
Taskinen, 2003, Diabetic dyslipidaemia: From basic research to clinical practice, Diabetologia, 46, 733, 10.1007/s00125-003-1111-y
Chapman, 2011, Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management, Eur. Heart J., 32, 1345, 10.1093/eurheartj/ehr112
Nordestgaard, 2014, Triglycerides and cardiovascular disease, Lancet, 384, 626, 10.1016/S0140-6736(14)61177-6
Boren, 2014, Postprandial hypertriglyceridemia as a coronary risk factor, Clin. Chim. Acta, 431, 131, 10.1016/j.cca.2014.01.015
Kroon, 2016, Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy?, Curr. Cardiol. Rep., 18, 67, 10.1007/s11886-016-0745-6
Varbo, 2018, Remnant Cholesterol and Myocardial Infarction in Normal Weight, Overweight, and Obese Individuals from the Copenhagen General Population Study, Clin. Chem., 64, 219, 10.1373/clinchem.2017.279463
Verweij, 2017, Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans, Arterioscler. Thromb. Vasc. Biol., 37, 969, 10.1161/ATVBAHA.116.308834
Steinberg, 1989, Lipoproteins and the pathogenesis of atherosclerosis, Circulation, 80, 719, 10.1161/01.CIR.80.3.719
Cohn, 1999, Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins, Arterioscler. Thromb. Vasc. Biol., 19, 2474, 10.1161/01.ATV.19.10.2474
Grundy, 2006, Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement, Curr. Opin. Cardiol., 21, 1, 10.1097/01.hco.0000200416.65370.a0
Grundy, 2006, Metabolic syndrome: Connecting and reconciling cardiovascular and diabetes worlds, J. Am. Coll. Cardiol., 47, 1093, 10.1016/j.jacc.2005.11.046
Ginsberg, 1991, Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis, Diabetes Care, 14, 839, 10.2337/diacare.14.9.839
Adiels, 2005, Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia, Arterioscler. Thromb. Vasc. Biol., 25, 1697, 10.1161/01.ATV.0000172689.53992.25
Verges, 2010, Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes, Atherosclerosis, 211, 353, 10.1016/j.atherosclerosis.2010.01.028
Lin, 1995, Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: Insulin negatively regulates MTP gene expression, J. Lipid. Res., 36, 1073, 10.1016/S0022-2275(20)39865-5
Blasiole, 2007, The physiological and molecular regulation of lipoprotein assembly and secretion, Mol. Biosyst., 3, 608, 10.1039/b700706j
Fisher, 2002, Complexity in the secretory pathway: The assembly and secretion of apolipoprotein B-containing lipoproteins, J. Biol. Chem., 277, 17377, 10.1074/jbc.R100068200
Choi, 2011, Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance, Trends Endocrinol. Metab., 22, 353, 10.1016/j.tem.2011.04.007
Horton, 2002, SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver, J. Clin. Investig., 109, 1125, 10.1172/JCI0215593
Kanter, 2019, Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes, J. Clin. Investig., 129, 4165, 10.1172/JCI127308
Haas, 2013, The regulation of ApoB metabolism by insulin, Trends Endocrinol. Metab., 24, 391, 10.1016/j.tem.2013.04.001
Laatsch, 2009, Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance, Atherosclerosis, 204, 105, 10.1016/j.atherosclerosis.2008.07.046
Gordts, 2016, ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors, J. Clin. Investig., 126, 2855, 10.1172/JCI86610
Toth, 2013, High-density lipoproteins: A consensus statement from the National Lipid Association, J. Clin. Lipidol., 7, 484, 10.1016/j.jacl.2013.08.001
Lewis, 2005, New insights into the regulation of HDL metabolism and reverse cholesterol transport, Circ. Res., 96, 1221, 10.1161/01.RES.0000170946.56981.5c
Fogelman, 1985, Receptor-mediated uptake of remnant lipoproteins by cholesterol-loaded human monocyte-macrophages, J. Biol. Chem., 260, 8783, 10.1016/S0021-9258(17)39420-6
Krauss, 2004, Lipids and lipoproteins in patients with type 2 diabetes, Diabetes Care, 27, 1496, 10.2337/diacare.27.6.1496
Lamarche, 1999, Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men, J. Clin. Investig., 103, 1191, 10.1172/JCI5286
Navab, 2011, HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms, Nat. Rev. Cardiol., 8, 222, 10.1038/nrcardio.2010.222
Khera, 2011, Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis, N. Engl. J. Med., 364, 127, 10.1056/NEJMoa1001689
Zhou, 2009, Impaired serum capacity to induce cholesterol efflux is associated with endothelial dysfunction in type 2 diabetes mellitus, Diabetes Vasc. Dis. Res., 6, 238, 10.1177/1479164109344934
Lathief, 2016, Approach to diabetes management in patients with CVD, Trends Cardiovasc. Med., 26, 165, 10.1016/j.tcm.2015.05.005
Ference, 2017, Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel, Eur. Heart J., 38, 2459, 10.1093/eurheartj/ehx144
McNamara, 1996, Differences in LDL subspecies involve alterations in lipid composition and conformational changes in apolipoprotein B, J. Lipid. Res., 37, 1924, 10.1016/S0022-2275(20)37557-X
Chait, 1993, Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B, Am. J. Med., 94, 350, 10.1016/0002-9343(93)90144-E
Hoogeveen, 2014, Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk In Communities (ARIC) study, Arterioscler. Thromb. Vasc. Biol., 34, 1069, 10.1161/ATVBAHA.114.303284
Witztum, 1982, Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity, Diabetes, 31, 283, 10.2337/diab.31.4.283
Bays, 2013, Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association, J. Clin. Lipidol., 7, 304, 10.1016/j.jacl.2013.04.001
Mooradian, 2004, Transcriptional control of apolipoprotein A-I gene expression in diabetes, Diabetes, 53, 513, 10.2337/diabetes.53.3.513
Chung, 2011, Adipose tissue ATP binding cassette transporter A1 contributes to high-density lipoprotein biogenesis in vivo, Circulation, 124, 1663, 10.1161/CIRCULATIONAHA.111.025445
McGillicuddy, 2011, Adipose modulation of high-density lipoprotein cholesterol: Implications for obesity, high-density lipoprotein metabolism, and cardiovascular disease, Circulation, 124, 1602, 10.1161/CIRCULATIONAHA.111.058453
Zhang, 2010, Adipocyte modulation of high-density lipoprotein cholesterol, Circulation, 121, 1347, 10.1161/CIRCULATIONAHA.109.897330
Farbstein, 2012, HDL dysfunction in diabetes: Causes and possible treatments, Expert Rev. Cardiovasc. Ther., 10, 353, 10.1586/erc.11.182
Ginsberg, 2000, Insulin resistance and cardiovascular disease, J. Clin. Investig., 106, 453, 10.1172/JCI10762
Yusuf, 2004, Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study, Lancet, 364, 937, 10.1016/S0140-6736(04)17018-9
Guyton, 2013, Relationship of lipoproteins to cardiovascular events: The AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on Global Health Outcomes), J. Am. Coll. Cardiol., 62, 1580, 10.1016/j.jacc.2013.07.023
Athyros, 2011, Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: The case for residual risk reduction after statin treatment, Open Cardiovasc. Med. J., 5, 24, 10.2174/1874192401105010024
Paneni, 2013, Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I, Eur. Heart J., 34, 2436, 10.1093/eurheartj/eht149
Kearney, 2008, Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: A meta-analysis, Lancet, 371, 117, 10.1016/S0140-6736(08)60104-X
Goldberg, 2009, Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications, J. Clin. Endocrinol. Metab., 94, 3171, 10.1210/jc.2008-2534
Kessler, 1998, Von Willebrand factor in diabetic angiopathy, Diabetes Metab., 24, 327
Giannini, 2011, Macrovascular angiopathy in children and adolescents with type 1 diabetes, Diabetes Metab. Res. Rev., 27, 436, 10.1002/dmrr.1195
Yamagishi, 2010, Advanced glycation end products, oxidative stress and diabetic nephropathy, Oxid. Med. Cell. Longev., 3, 101, 10.4161/oxim.3.2.11148
Sena, 2013, Endothelial dysfunction—a major mediator of diabetic vascular disease, Biochim. Biophys. Acta, 1832, 2216, 10.1016/j.bbadis.2013.08.006
Wautier, 1998, Diabetes, advanced glycation endproducts and vascular disease, Vasc. Med., 3, 131, 10.1177/1358836X9800300207
Bakker, 2009, Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity, Cell. Tissue Res., 335, 165, 10.1007/s00441-008-0685-6
Libby, 2012, Inflammation in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 32, 2045, 10.1161/ATVBAHA.108.179705
Badimon, 2012, Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease, Eur. Heart J. Acute Cardiovasc. Care, 1, 60, 10.1177/2048872612441582
Lecube, A., Pachon, G., Petriz, J., Hernandez, C., and Simo, R. (2011). Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS ONE, 6.
Lee, 2013, Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes, Diabetes, 62, 194, 10.2337/db12-0420
Meng, 2014, Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose, Mol. Neurobiol., 49, 673, 10.1007/s12035-013-8551-2
Koenen, 2011, Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue, Diabetes, 60, 517, 10.2337/db10-0266
Zeadin, 2013, Molecular mechanisms linking diabetes to the accelerated development of atherosclerosis, Can. J. Diabetes, 37, 345, 10.1016/j.jcjd.2013.06.001
Menegazzo, 2015, NETosis is induced by high glucose and associated with type 2 diabetes, Acta. Diabetol., 52, 497, 10.1007/s00592-014-0676-x
Joshi, 2013, High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation, FEBS Lett., 587, 2241, 10.1016/j.febslet.2013.05.053
Northcott, 2012, Adipokines and the cardiovascular system: Mechanisms mediating health and disease, Can. J. Physiol. Pharmacol., 90, 1029, 10.1139/y2012-053
Yamawaki, 2011, Vascular effects of novel adipocytokines: Focus on vascular contractility and inflammatory responses, Biol. Pharm. Bull., 34, 307, 10.1248/bpb.34.307
Maeda, 2002, Diet-induced insulin resistance in mice lacking adiponectin/ACRP30, Nat. Med., 8, 731, 10.1038/nm724
Kim, 2007, Obesity-associated improvements in metabolic profile through expansion of adipose tissue, J. Clin. Investig., 117, 2621, 10.1172/JCI31021
Yamauchi, 2003, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects, Nature, 423, 762, 10.1038/nature01705
Ye, 2015, Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets, Endocrinology, 156, 2019, 10.1210/en.2015-1066
Mandal, 2011, Molecular mechanism for adiponectin-dependent M2 macrophage polarization: Link between the metabolic and innate immune activity of full-length adiponectin, J. Biol. Chem., 286, 13460, 10.1074/jbc.M110.204644
Caligiuri, 2008, Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells, Hepatology, 47, 668, 10.1002/hep.21995
Ezenwaka, 2005, Caribbean female patients with type 2 diabetes mellitus have lower serum levels of adiponectin than nondiabetic subjects, Neth. J. Med., 63, 64
Dullaart, 2010, Carotid intima media thickness is associated with plasma adiponectin but not with the leptin:adiponectin ratio independently of metabolic syndrome, Atherosclerosis, 211, 393, 10.1016/j.atherosclerosis.2010.03.024
Iwashima, 2004, Hypoadiponectinemia is an independent risk factor for hypertension, Hypertension, 43, 1318, 10.1161/01.HYP.0000129281.03801.4b
Pilz, 2005, Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin, J. Clin. Endocrinol. Metab., 90, 4792, 10.1210/jc.2005-0167
Sattar, 2006, Adiponectin and coronary heart disease: A prospective study and meta-analysis, Circulation, 114, 623, 10.1161/CIRCULATIONAHA.106.618918
Ouchi, 2001, Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages, Circulation, 103, 1057, 10.1161/01.CIR.103.8.1057
Yang, 2006, Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action, Am. J. Physiol. Endocrinol. Metab., 290, E1253, 10.1152/ajpendo.00572.2004
Landecho, M.F., Tuero, C., Valenti, V., Bilbao, I., de la Higuera, M., and Fruhbeck, G. (2019). Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients, 11.
Schaffler, 2005, Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue, Biochim. Biophys. Acta, 1732, 96, 10.1016/j.bbaexp.2005.11.005
Auguet, T., Quintero, Y., Riesco, D., Morancho, B., Terra, X., Crescenti, A., Broch, M., Aguilar, C., Olona, M., and Porras, J.A. (2011). New adipokines vaspin and omentin. Circulating levels and gene expression in adipose tissue from morbidly obese women. BMC Med. Genet., 12.
Pan, 2010, Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes, Diabetes Res. Clin. Pract., 88, 29, 10.1016/j.diabres.2010.01.013
Tan, 2008, Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: Ex vivo and in vivo regulation of omentin-1 by insulin and glucose, Diabetes, 57, 801, 10.2337/db07-0990
Cai, 2009, Expression of omentin in adipose tissues in obese and type 2 diabetic patients, Zhonghua Yi Xue Za Zhi, 89, 381
Elsaid, 2018, Serum omentin-1 levels in type 2 diabetic obese women in relation to glycemic control, insulin resistance and metabolic parameters, J. Clin. Transl. Endocrinol., 13, 14
Wang, 2020, Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-kappaB signaling, Arch. Biochem. Biophys., 679, 108187, 10.1016/j.abb.2019.108187
Agra, 2017, Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells, Obesity (Silver Spring), 25, 1042, 10.1002/oby.21832
Mirzaei, 2016, Modulatory Role of Omentin-1 in Inflammation: Cytokines and Dietary Intake, J. Am. Coll. Nutr., 35, 670, 10.1080/07315724.2015.1126207
Dimova, 2015, The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis, Biomed. Res. Int., 2015, 823481, 10.1155/2015/823481
Esteghamati, 2014, Association of vaspin with metabolic syndrome: The pivotal role of insulin resistance, Diabetes Metab. J., 38, 143, 10.4093/dmj.2014.38.2.143