Lignins: Biosynthesis and Biological Functions in Plants

International Journal of Molecular Sciences - Tập 19 Số 2 - Trang 335
Qingquan Liu1,2, Le Luo3, Luqing Zheng1
1College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
2Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
3College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

Tóm tắt

Lignin là một trong những thành phần chính của thành tế bào thực vật và là một polyme phenolic tự nhiên có trọng lượng phân tử cao, với thành phần và cấu trúc phức tạp. Quá trình tổng hợp lignin đóng vai trò quan trọng trong sự phát triển của thực vật, sự phát triển của mô/cơ quan, khả năng chống lại sự đổ ngã và cũng như đáp ứng với nhiều loại stress sinh học và phi sinh học. Trong bài tổng quan này, chúng tôi hệ thống hóa quá trình tổng hợp lignin và sự điều chỉnh của nó thông qua biến đổi gen, đồng thời tóm tắt những chức năng sinh học chính của lignin trong thực vật và các ứng dụng của nó. Chúng tôi hy vọng bài tổng quan này sẽ cung cấp cái nhìn sâu sắc về vai trò quan trọng của quá trình tổng hợp lignin trong các quá trình sinh học khác nhau của thực vật và cung cấp cơ sở lý thuyết cho việc cải thiện gen về hàm lượng và thành phần lignin trong cây năng lượng và cây trồng.

Từ khóa


Tài liệu tham khảo

Ralph, 2004, Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids, Phytochem. Rev., 3, 29, 10.1023/B:PHYT.0000047809.65444.a4

Alejandro, 2012, AtABCG29 is a monolignol transporter involved in lignin biosynthesis, Curr. Biol., 22, 1207, 10.1016/j.cub.2012.04.064

Miao, 2010, ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes, Proc. Natl. Acad. Sci. USA, 107, 22728, 10.1073/pnas.1007747108

Bonawitz, 2010, The genetics of lignin biosynthesis: Connecting genotype to phenotype, Annu. Rev. Genet., 44, 337, 10.1146/annurev-genet-102209-163508

Liu, 2011, Sequestration and transport of lignin monomeric precursors, Molecules, 16, 710, 10.3390/molecules16010710

Ralph, 2010, Hydroxycinnamates in lignification, Phytochem. Rev., 9, 65, 10.1007/s11101-009-9141-9

Rencoret, 2012, Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods, J. Agric. Food Chem., 60, 5922, 10.1021/jf301002n

Mottiar, 2016, Designer lignins: Harnessing the plasticity of lignification, Curr. Opin. Biotechnol., 37, 190, 10.1016/j.copbio.2015.10.009

Singh, S., Bashri, G., Singh, A., and Prasad, S.M. (2016). Regulation of Xenobiotics in Higher Plants: Signalling and Detoxification, Springer.

Lan, 2015, Tricin, a flavonoid monomer in monocot lignification, Plant Physiol., 167, 1284, 10.1104/pp.114.253757

Eloy, 2017, Silencing chalcone synthase impedes the incorporation of tricin in lignin and increases lignin content, Plant Physiol., 173, 998, 10.1104/pp.16.01108

Rencoret, 2017, Hydroxystilbenes are monomers in palm fruit endocarp lignins, Plant Physiol., 174, 2072, 10.1104/pp.17.00362

Schuetz, 2014, Laccases direct lignification in the discrete secondary cell wall domains of protoxylem, Plant Physiol., 166, 798, 10.1104/pp.114.245597

Ithal, 2007, Developmental transcript profiling of cyst nematode feeding cells in soybean roots, Mol. Plant Microbe Interact., 20, 510, 10.1094/MPMI-20-5-0510

Tripathi, 2003, Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: Effects of genotypes, N levels and ethephon, Field Crop. Res., 84, 271, 10.1016/S0378-4290(03)00095-9

Rest, 2006, Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools, J. Exp. Bot., 57, 1399, 10.1093/jxb/erj120

Shadle, 2007, Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality, Phytochemistry, 68, 1521, 10.1016/j.phytochem.2007.03.022

Derikvand, 2008, Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1, Planta, 227, 943, 10.1007/s00425-007-0669-x

Moura, 2010, Abiotic and biotic stresses and changes in the lignin content and composition in plants, J. Integr. Plant Biol., 52, 360, 10.1111/j.1744-7909.2010.00892.x

Vanholme, 2012, A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis, Plant Cell, 24, 3506, 10.1105/tpc.112.102574

Huang, 2010, Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress, Plant Physiol., 153, 1526, 10.1104/pp.110.157370

Gui, 2011, Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice, Plant Physiol., 157, 574, 10.1104/pp.111.178301

Wagner, 2009, Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata, Plant Physiol., 149, 370, 10.1104/pp.108.125765

Thevenin, 2011, The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana, Mol. Plant, 4, 70, 10.1093/mp/ssq045

Desmet, 2017, Different metabolic routes for coniferaldehyde and sinapaldehyde with CINNAMYL ALCOHOL DEHYDROGENASE1 deficiency, Plant Physiol., 175, 1018, 10.1104/pp.17.00834

Giordano, 2014, Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA Reductase Gene, Transgenic Res., 23, 503, 10.1007/s11248-014-9784-1

Tu, 2010, Functional analyses of caffeic acid O-methyltransferase and Cinnamoyl-CoA-Reductase genes from perennial ryegrass (Lolium perenne), Plant Cell, 22, 3357, 10.1105/tpc.109.072827

Vanholme, 2013, Breeding with rare defective alleles (BRDA): A natural Populus nigra HCT mutant with modified lignin as a case study, New Phytol., 198, 765, 10.1111/nph.12179

Coleman, 2008, RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism, Proc. Natl. Acad. Sci. USA, 105, 4501, 10.1073/pnas.0706537105

Zhang, 2012, An engineered Monolignol 4-O-Methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis, Plant Cell, 24, 3135, 10.1105/tpc.112.101287

Wagner, 2015, Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system, Proc. Natl. Acad. Sci. USA, 112, 6218, 10.1073/pnas.1411926112

Takeda, 2017, Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice, Planta, 246, 1, 10.1007/s00425-017-2692-x

Vanholme, 2013, Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis, Science, 341, 1103, 10.1126/science.1241602

Ha, 2016, An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula, Plant J., 86, 363, 10.1111/tpj.13177

Saleme, 2017, Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification, Plant Physiol., 175, 1040, 10.1104/pp.17.00920

Eudes, A., Dutta, T., Deng, K., Jacquet, N., Sinha, A., Benites, V.T., Eek, B., Richel, A., Sattler, S.E., and Northen, T.R. (2017). SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS ONE, 12.

Liu, 2016, 4-Coumarate-CoA ligase-like gene OsAAE3 negatively mediates the rice blast resistance, floret development and lignin biosynthesis, Front. Plant Sci., 7, 2041

Yang, 2017, A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens, Nat. Genet., 49, 1364, 10.1038/ng.3919

Herrero, 2013, Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis, Planta, 237, 1599, 10.1007/s00425-013-1865-5

Zhao, 2013, LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis, Plant Cell, 25, 3976, 10.1105/tpc.113.117770

Guo, 2017, Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla, Plant Biotechnol. J., 15, 107, 10.1111/pbi.12595

Li, 2016, BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis, J. For. Res., 27, 1111, 10.1007/s11676-016-0229-y

Zeng, 2016, Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis, Plant Cell Environ., 39, 1780, 10.1111/pce.12741

Shafi, 2015, Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress, Plant Mol. Biol., 87, 615, 10.1007/s11103-015-0301-6

Tronchet, 2010, Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis, Mol. Plant Pathol., 11, 83, 10.1111/j.1364-3703.2009.00578.x

Berthet, 2011, Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems, Plant Cell, 23, 1124, 10.1105/tpc.110.082792

Kim, 2008, Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco, Planta, 227, 867, 10.1007/s00425-007-0663-3

Shigeto, 2015, Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem, J. Integr. Plant Biol., 57, 349, 10.1111/jipb.12334

Cosio, 2016, The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation, New Phytol., 213, 250, 10.1111/nph.14127

Wang, 2008, Generation and characterization of transgenic poplar plants overexpressing a cotton laccase gene, Plant Cell Tissue Organ Cult., 93, 303, 10.1007/s11240-008-9377-x

Wang, 2015, LACCASE5 is required for lignification of the Brachypodium distachyon Culm, Plant Physiol., 168, 192, 10.1104/pp.114.255489

Legay, 2007, Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway, Plant Sci., 173, 542, 10.1016/j.plantsci.2007.08.007

Legay, 2010, EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar, New Phytol., 188, 774, 10.1111/j.1469-8137.2010.03432.x

Zhong, 2007, Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis, Planta, 225, 1603, 10.1007/s00425-007-0498-y

Shadle, 2016, Combining enhanced biomass density with reduced lignin level for improved forage quality, Plant Biotechnol. J., 14, 895, 10.1111/pbi.12439

Willis, 2016, Downregulation of a UDP-arabinomutase gene in switchgrass (Panicum virgatum L.) results in increased cell wall lignin while reducing arabinose-glycans, Front. Plant Sci., 7, 1580, 10.3389/fpls.2016.01580

Rencoret, 2017, Changes in cell wall polymers and degradability in maize mutants lacking 3′- and 5′-O-Methyltransferases involved in lignin biosynthesis, Plant Cell Physiol., 58, 240

Barros, 2015, The cell biology of lignification in higher plants, Ann. Bot., 115, 1053, 10.1093/aob/mcv046

Bonawitz, 2014, Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant, Nature, 509, 376, 10.1038/nature13084

Liljegren, 2000, SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis, Nature, 404, 766, 10.1038/35008089

Liang, 2006, Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis, Planta, 224, 1185, 10.1007/s00425-006-0300-6

Schilmiller, 2009, Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis, Plant J., 60, 771, 10.1111/j.1365-313X.2009.03996.x

Berry, 2004, Understanding and reducing lodging in cereals, Adv. Agron., 84, 217, 10.1016/S0065-2113(04)84005-7

Tanaka, 2003, Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall, Plant Physiol., 133, 73, 10.1104/pp.103.022442

Islam, 2007, Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem, Field Crop. Res., 101, 240, 10.1016/j.fcr.2006.12.002

Zhang, 2011, Rice brittleness mutants: A way to open the ‘black box’ of monocot cell wall biosynthesis, J. Integr. Plant Biol., 53, 136, 10.1111/j.1744-7909.2010.01011.x

Peng, 2014, Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid, Field Crop. Res., 157, 1, 10.1016/j.fcr.2013.11.015

Zheng, 2017, Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat, Sci. Rep., 7, 41805, 10.1038/srep41805

Hu, 2017, The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum, Biol. Plant., 61, 1, 10.1007/s10535-016-0685-4

Dorairaj, D., Ismail, M.R., Sinniah, U.R., and Tan, K.B. (2017). Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia. J. Plant Nutr., 40.

Jie, 2016, The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.), Field Crop. Res., 199, 89, 10.1016/j.fcr.2016.09.025

Zhang, 2017, Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa), J. Plant Res., 130, 1, 10.1007/s10265-017-0943-3

Wang, 2015, Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.), Field Crop. Res., 180, 46, 10.1016/j.fcr.2015.05.009

Kong, 2014, Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat, Front. Plant Sci., 5, 703, 10.3389/fpls.2014.00703

Polle, 2002, Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 53, 1351

Liu, 2015, Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots, Plant Soil, 387, 323, 10.1007/s11104-014-2290-7

Jannoey, 2015, Comparative proteomic analysis of two rice cultivars (Oryza sativa L.) contrasting in brown planthopper (BPH) stress resistance, Plant Omics, 8, 96

Santiago, 2013, Impact of cell wall composition on maize resistance to pests and diseases, Int. J. Mol. Sci., 14, 6960, 10.3390/ijms14046960

Duan, 2014, Induced defense responses in rice plants against small brown planthopper infestation, Crop J., 2, 55, 10.1016/j.cj.2013.12.001

Jannoey, 2017, Expression analysis of genes related to rice resistance against brown planthopper, Nilaparvata lugens, Rice Sci., 24, 163, 10.1016/j.rsci.2016.10.001

Wang, Y., Sheng, L., Zhang, H., Du, X., An, C., Xia, X., Chen, F., Jiang, J., and Chen, S. (2017). CmMYB19 over-expression improves aphid tolerance in Chrysanthemum by promoting lignin synthesis. Int. J. Mol. Sci., 18.

Fujimoto, 2015, Sclareol induces plant resistance to root-knot nematode partially through ethylene-dependent enhancement of lignin accumulation, Mol. Plant Microbe Interact., 28, 398, 10.1094/MPMI-10-14-0320-R

Tianpei, 2015, Scorpion peptide LqhIT2 activates phenylpropanoid pathways via jasmonate to increase rice resistance to rice leafrollers, Plant Sci., 230, 1, 10.1016/j.plantsci.2014.10.005

Zhang, 2007, Erwinia carotovora ssp. carotovora infection induced “defense lignin” accumulation and lignin biosynthetic gene expression in chinese cabbage (Brassica rapa L. ssp. pekinensis), J. Integr. Plant Biol., 49, 993, 10.1111/j.1672-9072.2007.00478.x

Karkonen, 2010, Lignin biosynthesis studies in plant tissue cultures, J. Integr. Plant Biol., 52, 176, 10.1111/j.1744-7909.2010.00913.x

Miedes, 2014, The role of the secondary cell wall in plant resistance to pathogens, Front. Plant Sci., 5, 358, 10.3389/fpls.2014.00358

Ma, 2017, Wheat ROP proteins modulate defense response through lignin metabolism, Plant Sci., 262, 32, 10.1016/j.plantsci.2017.04.017

Mandal, S., Kar, I., Mukherjee, A.K., and Acharya, P. (2013). Elicitor-induced defense responses in Solanum lycopersicum against Ralstonia solanacearum. Sci. World J., 2013.

Shi, 2012, Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae, Acta Biochim. Biophys. Sin., 44, 555, 10.1093/abbs/gms035

Wang, 2015, Maize homologs of Hydroxycinnamoyltransferase, a key enzyme in lignin biosynthesis, bind the nucleotide binding leucine-rich repeat Rp1 proteins to modulate the defense response, Plant Physiol., 169, 2230

Chen, 2013, Cadmium adsorption by willow root: The role of cell walls and their subfractions, Environ. Sci. Pollut. Res. Int., 20, 5665, 10.1007/s11356-013-1506-3

Dalcorso, 2010, Regulatory networks of cadmium stress in plants, Plant Signal. Behav., 5, 663, 10.4161/psb.5.6.11425

Demirbas, 2004, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication, J. Hazard. Mater., 109, 221, 10.1016/j.jhazmat.2004.04.002

Guo, 2008, Adsorption of metal ions on lignin, J. Hazard. Mater., 151, 134, 10.1016/j.jhazmat.2007.05.065

Bhuiyan, 2007, Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat, Plant Mol. Biol., 64, 305, 10.1007/s11103-007-9155-x

2007, Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess, Water Air Soil Pollut., 185, 185, 10.1007/s11270-007-9441-x

Tahara, 2005, Aluminum tolerance and aluminum-induced deposition of callose and lignin in the root tips of Melaleuca and Eucalyptus species, J. For. Res, 10, 325, 10.1007/s10310-005-0153-z

Lima, 2009, Chá: Aspectos relacionados à qualidade e perspectivas tea: Aspects related to the quality and prospects, Ciênc. Rural, 39, 1258, 10.1590/S0103-84782009005000026

Ghanati, 2005, Deposition of suberin in roots of soybean induced by excess boron, Plant Sci., 168, 397, 10.1016/j.plantsci.2004.09.004

Mao, 2004, Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): Aluminium-regulated genes for the metabolism of cell wall components, J. Exp. Bot., 55, 137, 10.1093/jxb/erh030

Gao, 2012, Roles of apoplastic peroxidases, laccases, and lignification in the manganese tolerance of hyperaccumulator Phytolacca americana, Acta Physiol. Plant, 34, 151, 10.1007/s11738-011-0813-x

Lin, 2005, Rapid effect of copper on lignin biosynthesis in soybean roots, Plant Sci., 168, 855, 10.1016/j.plantsci.2004.10.023

Villanueva, 2006, Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsisthaliana and the related metal hyperaccumulator Thlaspi caerulescens, Plant Physiol., 142, 1127, 10.1104/pp.106.082073

Yang, 2007, Rapid effect of cadmium on lignin biosynthesis in soybean roots, Plant Sci., 172, 632, 10.1016/j.plantsci.2006.11.018

Temiz, 2007, A comparison of kraft and kraft-sodium borohydrate brutia pine pulps, Build. Environ., 42, 2586, 10.1016/j.buildenv.2006.07.022

Ederli, 2004, Responses induced by high concentration of cadmium in Phragmites australis roots, Physiol. Plant., 121, 66, 10.1111/j.0031-9317.2004.00295.x

Schat, 2008, Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 31, 301, 10.1111/j.1365-3040.2007.01764.x

Liu, Q., Le, L., Wang, X., Shen, Z., and Zheng, L. (2017). Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int. J. Mol. Sci., 18.

Feng, J., Jia, W., Lv, S., Bao, H., Miao, F., Zhang, X., Wang, J., Li, J., Li, D., and Zhu, C. (2017). Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol. J.

Ahsan, 2012, Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress, Amino Acids, 42, 317, 10.1007/s00726-010-0809-7

Chaves, 2009, Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell, Ann. Bot., 103, 551, 10.1093/aob/mcn125

Agarwal, 2012, Bioengineering for salinity tolerance in plants: State of the art, Mol. Biotechnol., 54, 102, 10.1007/s12033-012-9538-3

Hofrichter, 2001, Occurrence, Function and Biosynthesis of Lignins, Biopolymers. Lignin, Humic Substances and Coal, Volume 1, 1

Mourasobczak, J., Souza, U., and Mazzafera, P. (2011). Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proc., 5.

Hu, 2009, Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves, J. Appl. Genet., 50, 213, 10.1007/BF03195675

Fan, 2006, Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics, Plant Physiol., 140, 603, 10.1104/pp.105.073130

Srivastava, 2015, Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala, Physiol. Mol. Biol. Plants, 21, 197, 10.1007/s12298-015-0289-z

Yamaguchi, 2010, Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone, Plant Cell Environ., 33, 223, 10.1111/j.1365-3040.2009.02073.x

Park, 2011, Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli, Planta, 233, 621, 10.1007/s00425-010-1326-3

Klejdus, 2010, Lignification and related parameters in copper-exposed Matricaria chamomilla roots: Role of H2O2 and NO in this process, Plant Sci., 179, 383, 10.1016/j.plantsci.2010.06.014

Christensen, 2007, A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Clim. Chang., 81, 7, 10.1007/s10584-006-9210-7

Bita, 2013, Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops, Front. Plant Sci., 4, 273, 10.3389/fpls.2013.00273

Guy, 2008, Metabolomics of temperature stress, Physiol. Plant., 132, 220, 10.1111/j.1399-3054.2007.00999.x

Wei, 2006, Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: Importance of moderately abundant ESTs in genomic studies, Plant Cell Environ., 29, 558, 10.1111/j.1365-3040.2005.01432.x

Gindl, 2000, The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width, Trees, 14, 409, 10.1007/s004680000057

Yun, 2013, Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment, BMC Plant Biol., 13, 1, 10.1186/1471-2229-13-44

Zhao, 2013, Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula, Proc. Natl. Acad. Sci. USA, 110, 13660, 10.1073/pnas.1312234110

Gellerstedt, G., and Henriksson, G. (2008). Lignins: Major Sources, Structure and Properties. Monomers, Polymers and Composites from Renewable Resources, Elsevier.

Chen, 2012, A polymer of caffeyl alcohol in plant seeds, Proc. Natl. Acad. Sci. USA, 109, 1772, 10.1073/pnas.1120992109

Constant, 2016, New insights into the structure and composition of technical lignins: A comparative characterisation study, Green Chem., 18, 2651, 10.1039/C5GC03043A

Lupoi, 2015, Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin, Renew. Sustain. Energy Rev., 49, 871, 10.1016/j.rser.2015.04.091

Ragauskas, 2006, The path forward for biofuels and biomaterials, Science, 311, 484, 10.1126/science.1114736

Phuong, 2013, Isolation and characterization of herbaceous lignins for applications in biomaterials, Ind. Crop. Prod., 41, 356, 10.1016/j.indcrop.2012.04.049

Azadfar, 2015, Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol, Int. J. Biol. Macromol., 75, 58, 10.1016/j.ijbiomac.2014.12.049

Vinardell, M.P., and Mitjans, M. (2017). Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 18.