Status and challenges facing representative anode materials for rechargeable lithium batteries

Journal of Energy Chemistry - Tập 66 - Trang 260-294 - 2022
Liqiang Zhang1,2, Chenxi Zhu1, Sicheng Yu1, Daohan Ge1, Haoshen Zhou2,3
1Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
2Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
3Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan

Tài liệu tham khảo

Perera, 2018, Int. J. Env. Res. Pub. He., 15, 16, 10.3390/ijerph15010016

Chu, 2017, Nat. Mater., 16, 16, 10.1038/nmat4834

Grey, 2017, Nat. Mater., 16, 45, 10.1038/nmat4777

Qiao, 2020, Joule, 4, 1445, 10.1016/j.joule.2020.05.012

Hesse, 2017, Energies, 10, 2107, 10.3390/en10122107

Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c

Mauger, 2019, J. Electrochem. Soc., 167

Reddy, 2020, Materials, 13, 1884, 10.3390/ma13081884

Nagaura, 1990, Prog. Batteries Solar Cells, 9, 209

Liu, 2016, Mater. Today, 19, 109, 10.1016/j.mattod.2015.10.009

Palacin, 2009, Chem. Soc. Rev., 38, 2565, 10.1039/b820555h

Aravindan, 2015, Adv. Energy Mater., 5, 1402225, 10.1002/aenm.201402225

Okada, 2004, J. Ind. Eng. Chem., 10, 1104

Chou, 2011, J. Phys. Chem. C, 115, 20018, 10.1021/jp205484v

Cheng, 2017, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Xu, 2004, Chem. Rev., 104, 4303, 10.1021/cr030203g

Geng, 2020, Adv. Energy Mater., 10, 1903030, 10.1002/aenm.201903030

Roselin, 2019, Materials, 12, 1229, 10.3390/ma12081229

Qi, 2017, J. Mater. Chem. A, 5, 19521, 10.1039/C7TA05283A

Wang, 2016, ACS Appl. Mater. Inter., 8, 33091, 10.1021/acsami.6b11996

Hassoun, 2014, Nano Lett., 14, 4901, 10.1021/nl502429m

Asenbauer, 2020, Sustain. Energ. Fuels, 4, 5387, 10.1039/D0SE00175A

Adams, 2019, Adv. Energy Mater., 9, 1900550, 10.1002/aenm.201900550

Yao, 2020, Chem. Commun., 56, 14570, 10.1039/D0CC05084A

Birrozzi, 2020, Batteries Supercaps, 3, 284, 10.1002/batt.201900154

Song, 1996, J. Electrochem. Soc., 143, L120, 10.1149/1.1836896

Persson, 2010, J. Phys. Chem. Lett., 1, 1176, 10.1021/jz100188d

Sun, 2013, Adv. Mater., 25, 1125, 10.1002/adma.201203108

Moradi, 2016, J. Appl. Electrochem., 46, 123, 10.1007/s10800-015-0914-0

Allart, 2018, J. Electrochem. Soc., 165, A380, 10.1149/2.1251802jes

Liu, 2019, Nat. Nanotechnol., 14, 50, 10.1038/s41565-018-0284-y

Wang, 2018, NPJ Comput. Mater., 4, 1, 10.1038/s41524-017-0060-9

Peled, 1979, J. Electrochem. Soc., 126, 2047, 10.1149/1.2128859

Peled, 2017, J. Electrochem. Soc., 164, A1703, 10.1149/2.1441707jes

Fong, 1990, J. Electrochem. Soc., 137, 2009, 10.1149/1.2086855

Xing, 2018, Acc. Chem. Res., 51, 282, 10.1021/acs.accounts.7b00474

Xu, 2010, Langmuir, 26, 11538, 10.1021/la1009994

Wang, 2018, Nat. Energy, 3, 22, 10.1038/s41560-017-0033-8

Yamada, 2014, J. Am. Chem. Soc., 136, 5039, 10.1021/ja412807w

Jeong, 2002, Electrochem. Solid. St., 6, A13, 10.1149/1.1526781

Zhang, 2020, Adv. Energy Mater., 10, 2000368, 10.1002/aenm.202000368

Komaba, 2010, J. Power Sources, 195, 6069, 10.1016/j.jpowsour.2009.12.058

Yoshio, 2004, J. Mater. Chem., 14, 1754, 10.1039/b316702j

Cai, 2020, Chem. Soc. Rev., 49, 3806, 10.1039/C9CS00728H

Collin, 2019, Energies, 12, 1839, 10.3390/en12101839

Zhu, 2019, Small, 15, 1805389, 10.1002/smll.201805389

Mao, 2018, Electrochem. Commun., 97, 37, 10.1016/j.elecom.2018.10.007

Logan, 2020, Trends. Chem., 2, 354, 10.1016/j.trechm.2020.01.011

Colclasure, 2019, J. Electrochem. Soc., 166, A1412, 10.1149/2.0451908jes

Zhang, 2014, Electrochim. Acta, 127, 39, 10.1016/j.electacta.2014.02.008

Xu, 2007, J. Phys. Chem. C, 111, 7411, 10.1021/jp068691u

Okoshi, 2013, J. Electrochem. Soc., 160, A2160, 10.1149/2.074311jes

Shi, 2012, J. Am. Chem. Soc., 134, 15476, 10.1021/ja305366r

Peled, 1997, J. Electrochem. Soc., 144, L208, 10.1149/1.1837858

Heiskanen, 2019, Joule, 3, 2322, 10.1016/j.joule.2019.08.018

Vetter, 2005, J. Power Sources, 147, 269, 10.1016/j.jpowsour.2005.01.006

Billaud, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.97

Yan, 2020, Ceram. Int.

Ferg, 1994, J. Electrochem. Soc., 141, L147, 10.1149/1.2059324

Tanaka, 2016, Phys. Chem. Chem. Phys., 18, 23383, 10.1039/C6CP04131K

Ziebarth, 2014, Phys. Rev. B, 89, 10.1103/PhysRevB.89.174301

Gao, 2015, Ionics, 21, 2409, 10.1007/s11581-015-1435-x

Chen, 2018, Chem. Rec., 18, 350, 10.1002/tcr.201700042

Yi, 2015, J. Mater. Chem. A, 3, 5750, 10.1039/C4TA06882C

Chen, 2001, J. Electrochem. Soc., 148, A102, 10.1149/1.1344523

Wilkening, 2007, Phys. Chem. Chem. Phys., 9, 1239, 10.1039/B616269J

Yuan, 2017, Adv. Energy Mater., 7, 1601625, 10.1002/aenm.201601625

Kavan, 2001, Electrochem. Solid. St., 5, A39, 10.1149/1.1432783

Tang, 2008, Electrochem. Commun., 10, 1513, 10.1016/j.elecom.2008.07.049

Wang, 2015, Chem. Mater., 27, 5647, 10.1021/acs.chemmater.5b02027

Bruce, 2008, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505

Shen, 2012, Adv. Mater., 24, 6502, 10.1002/adma.201203151

Wang, 2019, Nanoscale, 11, 520, 10.1039/C8NR07249C

Liu, 2021, J. Energy Chem., 54, 754, 10.1016/j.jechem.2020.06.017

Roh, 2020, Chem. Eng. J., 385, 10.1016/j.cej.2019.123984

Wan, 2012, J. Mater. Chem., 22, 17773, 10.1039/c2jm33346e

Hsieh, 2012, J. Alloys Compd., 513, 393, 10.1016/j.jallcom.2011.10.055

Wang, 2014, Electrochim. Acta, 129, 283, 10.1016/j.electacta.2014.02.112

Park, 2008, J. Am. Chem. Soc., 130, 14930, 10.1021/ja806104n

Xing, 2010, Chinese J. Inorg. Chem., 26, 233

Zhang, 2013, Electrochim. Acta, 98, 146, 10.1016/j.electacta.2013.03.006

Zhang, 2011, J. Inorg. Mater., 26, 443, 10.3724/SP.J.1077.2011.00443

Zhao, 2013, Electrochim. Acta, 109, 645, 10.1016/j.electacta.2013.07.164

Yi, 2014, J. Power Sources, 246, 505, 10.1016/j.jpowsour.2013.08.005

Salvatore, 2020, Chem. Eur. J., 26, 9389, 10.1002/chem.202002489

Guo, 2015, J. Mater. Chem. A, 3, 4938, 10.1039/C4TA05660D

Wen, 2014, J. Electrochem. Soc., 162, A3038, 10.1149/2.0061502jes

Devie, 2015, J. Electrochem. Soc., 162, A1033, 10.1149/2.0941506jes

Lv, 2017, J. Electrochem. Soc., 164, A2213, 10.1149/2.0031712jes

Wu, 2013, J. Power Sources, 237, 285, 10.1016/j.jpowsour.2013.03.057

Han, 2017, J. Mater. Chem. A, 5, 6368, 10.1039/C7TA00303J

He, 2012, J. Power Sources, 202, 253, 10.1016/j.jpowsour.2011.11.037

Li, 2014, Electrochim. Acta, 139, 104, 10.1016/j.electacta.2014.07.017

Wang, 2015, Mater. Inter., 7, 23605, 10.1021/acsami.5b07047

Lee, 2016, J. Mater. Chem. A, 4, 5366, 10.1039/C6TA00265J

Seefurth, 1977, J. Electrochem. Soc., 124, 1207, 10.1149/1.2133529

McDowell, 2013, Adv. Mater., 25, 4966, 10.1002/adma.201301795

Li, 1999, Electrochem. Solid. St., 2, 547, 10.1149/1.1390899

Park, 2010, Chem. Soc. Rev., 39, 3115, 10.1039/b919877f

Du, 2016, J. Mater. Chem. A, 4, 32, 10.1039/C5TA06962A

Philippe, 2012, Chem. Mater., 24, 1107, 10.1021/cm2034195

Hertzberg, 2010, J. Am. Chem. Soc., 132, 8548, 10.1021/ja1031997

Zhao, 2020, Nanotechnology, 32, 042002, 10.1088/1361-6528/abb850

Liu, 2012, ACS Nano, 6, 1522, 10.1021/nn204476h

Sun, 2019, Energy Technol., 7, 1900962, 10.1002/ente.201900962

Lin, 2015, Energy Environ. Sci., 8, 3187, 10.1039/C5EE02487K

Zong, 2015, PNAS, 112, 13473, 10.1073/pnas.1513012112

Jin, 2017, Adv. Energy Mater., 7, 1700715, 10.1002/aenm.201700715

Lee, 2016, J. Electrochem. Soc., 164, A6206, 10.1149/2.0321701jes

Park, 2011, Bull. Korean Chem. Soc., 32, 145, 10.5012/bkcs.2011.32.1.145

Liu, 2014, Nat. Nanotechnol., 9, 187, 10.1038/nnano.2014.6

Kim, 2016, Nano Lett., 16, 282, 10.1021/acs.nanolett.5b03776

Forney, 2013, Nano Lett., 13, 4158, 10.1021/nl401776d

Zhao, 2014, Nat. Commun., 5, 1

Holtstiege, 2018, Batteries, 4, 4, 10.3390/batteries4010004

Wang, 2013, RSC adv., 3, 15022, 10.1039/c3ra42773k

Cao, 2016, Nano Lett., 16, 7235, 10.1021/acs.nanolett.6b03655

Zhu, 2019, RSC adv., 9, 435, 10.1039/C8RA07988A

Wang, 2017, Sci. Rep., 7, 1, 10.1038/s41598-016-0028-x

Wei, 2018, J. Mater. Chem. A, 6, 20982, 10.1039/C8TA07956K

Huang, 2015, Electrochim. Acta, 184, 364, 10.1016/j.electacta.2015.10.087

Lin, 2015, Energy Environ. Sci., 8, 2371, 10.1039/C5EE01363A

Chan, 2008, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411

Yang, 2020, Sustain. Energ. Fuels, 4, 1577, 10.1039/C9SE01165J

Wang, 2019, J. Mater. Chem. A, 7, 15113, 10.1039/C9TA00519F

Song, 2010, Nano Lett., 10, 1710, 10.1021/nl100086e

Dhalluin, 2010, Appl. Phys. Lett., 96, 10.1063/1.3373546

Tuan, 2008, Chem. Mater., 20, 1239, 10.1021/cm7033068

Peng, 2008, Appl. Phys. Lett., 93

Chan, 2010, ACS Nano, 4, 1443, 10.1021/nn901409q

Hu, 2014, Sci. Rep., 4, 1, 10.1038/srep05036

Chen, 2018, Nanomaterials, 8, 285, 10.3390/nano8050285

Liu, 2011, Nano Lett., 11, 2251, 10.1021/nl200412p

Karuppiah, 2020, ACS Nano, 14, 12006, 10.1021/acsnano.0c05198

Wu, 2012, Nat. Nanotechnol., 7, 310, 10.1038/nnano.2012.35

Graetz, 2003, Electrochem. Solid. St., 6, A194, 10.1149/1.1596917

Salah, 2019, J. Power Sources, 414, 48, 10.1016/j.jpowsour.2018.12.068

Zhou, 2013, J. Power Sources, 234, 310, 10.1016/j.jpowsour.2013.01.183

Beaulieu, 2001, Electrochem. Solid. St., 4, A137, 10.1149/1.1388178

Szczech, 2011, Energy Environ. Sci., 4, 56, 10.1039/C0EE00281J

Su, 2014, Adv. Energy Mater., 4, 1300882, 10.1002/aenm.201300882

Gattu, 2017, Inorganics, 5, 27, 10.3390/inorganics5020027

Xu, 2010, J. Electrochem. Soc., 157, A765, 10.1149/1.3417076

Mukanova, 2018, Chemistryopen, 7, 92, 10.1002/open.201700162

Demirkan, 2015, J. Power Sources, 273, 52, 10.1016/j.jpowsour.2014.09.027

Takamura, 2004, J. Power Sources, 129, 96, 10.1016/j.jpowsour.2003.11.014

Ge, 2013, Nanotechnology, 24, 10.1088/0957-4484/24/42/422001

An, 2019, Nat. Commun., 10, 1, 10.1038/s41467-018-07882-8

Zuo, 2020, ACS Appl. Mater. Inter., 12, 43785, 10.1021/acsami.0c12747

Manj, 2018, Front Chem, 6, 539, 10.3389/fchem.2018.00539

Ge, 2020, ACS Appl. Nano Mater., 3, 3011, 10.1021/acsanm.0c00296

Thakur, 2012, Chem. Mater., 24, 2998, 10.1021/cm301376t

Li, 2014, Nat. Commun., 5, 1

Esmanski, 2009, Adv. Funct. Mater., 19, 1999, 10.1002/adfm.200900306

Kim, 2008, Angew. Chem., 120, 10305, 10.1002/ange.200804355

Ren, 2016, J. Mater. Chem. A, 4, 552, 10.1039/C5TA07487H

Zhao, 2019, J. Power Sources, 439

Park, 2016, ChemSusChem, 9, 834, 10.1002/cssc.201501633

Entwistle, 2018, J. Mater. Chem. A, 6, 18344, 10.1039/C8TA06370B

Liu, 2013, Sci. Rep., 3, 1

Xiao, 2015, Nat. Commun., 6, 1

Wang, 2019, Chem. Eur. J., 25, 9071, 10.1002/chem.201901238

Sheng, 2014, Front. Energy Res., 2, 56, 10.3389/fenrg.2014.00056

Wang, 2018, Nano Lett., 18, 7060, 10.1021/acs.nanolett.8b03065

Yang, 2020, Nanoscale, 12, 7461, 10.1039/C9NR10652A

Luo, 2017, Adv. Energy Mater., 7, 1701083, 10.1002/aenm.201701083

Wilson, 1995, J. Appl. Phys., 77, 2363, 10.1063/1.358759

Hu, 2019, J. Energy Chem., 32, 124, 10.1016/j.jechem.2018.07.008

Xiao, 2018, RSC adv., 8, 27580, 10.1039/C8RA04804E

Zhu, 2018, Small, 14, 1802457, 10.1002/smll.201802457

Edfouf, 2011, J. Power Sources, 196, 4762, 10.1016/j.jpowsour.2011.01.046

Ng, 2006, Angew. Chem. Int. Ed., 45, 6896, 10.1002/anie.200601676

Xu, 2010, J. Mater. Chem., 20, 3216, 10.1039/b921979j

Zhou, 2020, Nano Energy, 70

Lu, 2017, ACS Appl. Mater. Inter., 9, 32829, 10.1021/acsami.7b10922

Jia, 2020, Nat. Commun., 11, 1, 10.1038/s41467-019-13993-7

Xu, 2015, Adv. Energy Mater., 5, 1400753, 10.1002/aenm.201400753

Nie, 2018, Small, 14, 1800635, 10.1002/smll.201800635

Wang, 2020, J. Power Sources, 450

Son, 2020, Adv. Mater., 32, 2003286, 10.1002/adma.202003286

Ko, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.113

Li, 2021, Energy Stor. Mater., 35, 550, 10.1016/j.ensm.2020.11.028

Chae, 2020, Angew. Chem. Int. Ed., 59, 110, 10.1002/anie.201902085

Poizot, 2000, Nature, 407, 496, 10.1038/35035045

Li, 2014, J. Mater. Chem. A, 2, 11417, 10.1039/C4TA01562B

Hwa, 2013, J. Phys. Chem. C, 117, 7013, 10.1021/jp401333v

Lee, 2015, ACS Appl. Mater. Inter., 7, 27234, 10.1021/acsami.5b08401

Rangasamy, 2014, Carbon, 77, 1065, 10.1016/j.carbon.2014.06.022

Li, 2019, Nanoscale, 11, 16781, 10.1039/C9NR05264J

Wang, 2019, J. Alloys Compd., 795, 284, 10.1016/j.jallcom.2019.05.038

Yuan, 2021, J. Alloys Compd., 851, 10.1016/j.jallcom.2020.156795

Yang, 2017, Adv. Mater., 29, 1700523, 10.1002/adma.201700523

Hu, 2020, ACS Appl. Mater. Inter., 12, 48467, 10.1021/acsami.0c10418

Li, 2015, Nat. Commun., 6, 1

Sushko, 2010, J. Phys. Chem. Lett., 1, 1967, 10.1021/jz100520c

He, 2015, Nano Lett., 15, 1437, 10.1021/nl5049884

Guo, 2017, Mater. Inter., 9, 42084, 10.1021/acsami.7b13035

Jin, 2017, Energy Environ. Sci., 10, 580, 10.1039/C6EE02685K

Shi, 2020, Adv. Funct. Mater., 30, 2002980, 10.1002/adfm.202002980

Yoon, 2007, J. Power Sources, 167, 520, 10.1016/j.jpowsour.2007.01.096

Stokes, 2017, ACS Nano, 11, 10088, 10.1021/acsnano.7b04523

Xia, 2016, ACS Energy Lett., 1, 492, 10.1021/acsenergylett.6b00256

Ruttert, 2019, ACS Appl. Energy Mater., 3, 743, 10.1021/acsaem.9b01926

Suh, 2020, J. Alloys Compd., 827, 10.1016/j.jallcom.2020.154102

Zhang, 2018, Energy Environ. Sci., 11, 669, 10.1039/C8EE00239H

Liu, 2012, Adv. Energy Mater., 2, 722, 10.1002/aenm.201200024

Xi, 2020, ACS Appl. Mater. Inter., 12, 49080, 10.1021/acsami.0c14157

Wu, 2013, Nat. Commun., 4, 1

Niu, 2019, Nat. Energy, 4, 551, 10.1038/s41560-019-0390-6

Thackeray, 2012, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e

Gao, 2019, Nat. Mater., 18, 384, 10.1038/s41563-019-0305-8

Zhang, 2017, Adv. Sci., 4, 1600445, 10.1002/advs.201600445

Wang, 2020, J. Energy Chem., 48, 145, 10.1016/j.jechem.2019.12.024

Yu, 2020, J. Energy Chem., 55, 533, 10.1016/j.jechem.2020.07.020

Bruce, 2012, Nat. Mater., 11, 19, 10.1038/nmat3191

Lin, 2017, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16

Dornbusch, 2014, J. Electrochem. Soc., 162, A262, 10.1149/2.0021503jes

Bhattacharyya, 2010, Nat. Mater., 9, 504, 10.1038/nmat2764

Wood, 2016, ACS Cent. Sci., 2, 790, 10.1021/acscentsci.6b00260

Lu, 2015, Adv. Energy Mater., 5, 1400993, 10.1002/aenm.201400993

Tikekar, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.114

Sacci, 2014, Chem. Commun., 50, 2104, 10.1039/c3cc49029g

Cohen, 2000, J. Phys. Chem. B, 104, 12282, 10.1021/jp002526b

Chazalviel, 1990, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355

Rosso, 2001, J. Power Sources, 97, 804, 10.1016/S0378-7753(01)00734-0

Ely, 2013, J. Electrochem. Soc., 160, A662, 10.1149/1.057304jes

Chen, 2021, Adv. Mater., 33, 2004128, 10.1002/adma.202004128

Li, 2017, Science, 358, 506, 10.1126/science.aam6014

Wang, 2018, Nat. Energy, 3, 227, 10.1038/s41560-018-0104-5

Zhang, 2018, Angew. Chem., 130, 5399, 10.1002/ange.201801513

Meyerson, 2020, ACS Nano, 15, 29, 10.1021/acsnano.0c05636

Liu, 2020, Adv. Energy Mater., 10, 2002297, 10.1002/aenm.202002297

Zhang, 2021, J. Energy Chem., 52, 318, 10.1016/j.jechem.2020.04.025

Zhang, 2018, Joule, 2, 764, 10.1016/j.joule.2018.02.001

Chen, 2017, Energy Stor. Mater., 8, 194, 10.1016/j.ensm.2017.01.003

Osaka, 1997, J. Electrochem. Soc., 144, 1709, 10.1149/1.1837665

Huang, 2018, Adv. Mater., 30, 1803270, 10.1002/adma.201803270

Yan, 2018, Angew. Chem., 130, 14251, 10.1002/ange.201807034

Zhang, 2017, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989

Li, 2015, Nat. Commun., 6, 1

Jung, 2016, J. Electrochem. Soc., 163, A1705, 10.1149/2.0951608jes

Cheng, 2016, Adv. Sci., 3, 1500213, 10.1002/advs.201500213

Gauthier, 2015, J. Phys. Chem. Lett., 6, 4653, 10.1021/acs.jpclett.5b01727

Stone, 2011, J. Electrochem. Soc., 159, A222, 10.1149/2.030203jes

Zhu, 2017, Adv. Mater., 29, 1603755, 10.1002/adma.201603755

Li, 2016, Adv. Mater., 28, 1853, 10.1002/adma.201504526

Bai, 2018, Adv. Mater., 30, 1801213, 10.1002/adma.201801213

Wu, 2019, J. Mater. Chem. A, 7, 25415, 10.1039/C9TA09464D

Lin, 2021, J. Energy Chem., 55, 129, 10.1016/j.jechem.2020.07.003

Liu, 2020, Adv. Mater., 32, 1902724, 10.1002/adma.201902724

Janek, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.141

Manthiram, 2017, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2016.103

Yamada, 2018, Joule, 2, 371, 10.1016/j.joule.2018.03.002

Xin, 2017, ACS Energy Lett., 2, 1385, 10.1021/acsenergylett.7b00175

Wang, 2019, ACS Appl. Mater. Inter., 11, 5168, 10.1021/acsami.8b21352

Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600

Zhao, 2017, PNAS, 114, 11069, 10.1073/pnas.1708489114

Fu, 2016, PNAS, 113, 7094, 10.1073/pnas.1600422113

Wang, 2020, Chem. Commun., 56, 7195, 10.1039/D0CC03032E

Choi, 2016, Phys. Chem. Chem. Phys., 18, 22540, 10.1039/C6CP03563A

Wang, 2019, Nano Res., 12, 217, 10.1007/s12274-018-2205-7

Heine, 2014, Adv. Energy Mater., 4, 1300815, 10.1002/aenm.201300815

Ryou, 2015, Adv. Funct. Mater., 25, 834, 10.1002/adfm.201402953

Jin, 2020, Mater. Today Nano

Zhang, 2017, Angew. Chem., 129, 7872, 10.1002/ange.201702099

Lin, 2016, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32

Ye, 2019, Angew. Chem. Int. Ed., 58, 2437, 10.1002/anie.201814324

Niu, 2019, Nat. Nanotechnol., 14, 594, 10.1038/s41565-019-0427-9

Wang, 2019, Adv. Energy Mater., 9, 1802720, 10.1002/aenm.201802720

Chen, 2020, Energy Stor. Mater., 26, 56, 10.1016/j.ensm.2019.12.023

Huang, 2019, Adv. Mater., 31, 1805334, 10.1002/adma.201805334

Yang, 2015, Nat. Commun., 6, 1

Kim, 2018, J. Mater. Chem. A, 6, 15540, 10.1039/C8TA05069D

Chi, 2017, Adv. Funct. Mater., 27, 1700348, 10.1002/adfm.201700348

Phattharasupakun, 2019, Chem. Commun., 55, 5689, 10.1039/C9CC01528K

Zhao, 2020, Chem. Eng. J., 392

Liang, 2016, PNAS, 113, 2862, 10.1073/pnas.1518188113

Fu, 2020, Adv. Mater., 32, 2000952, 10.1002/adma.202000952

Lin, 2017, PNAS, 114, 4613, 10.1073/pnas.1619489114

Fan, 2018, Adv. Energy Mater., 8, 1802350, 10.1002/aenm.201802350

Liu, 2020, J. Am. Chem. Soc., 142, 2438, 10.1021/jacs.9b11750

Fan, 2018, Adv. Energy Mater., 8, 1703360, 10.1002/aenm.201703360

Zou, 2018, Nat. Commun., 9, 1, 10.1038/s41467-017-02088-w

Liu, 2016, Nat. Commun., 7, 1

Jiang, 2020, Energy Stor. Mater., 29, 84, 10.1016/j.ensm.2020.04.006

Stock, 2012, Chem. Rev., 112, 933, 10.1021/cr200304e

Zheng, 2019, J. Mater. Chem. A, 7, 3469, 10.1039/C8TA11075A

Xie, 2019, Electrochem. Commun., 99, 65, 10.1016/j.elecom.2019.01.005

Zhu, 2018, Adv. Energy Mater., 8, 1703505, 10.1002/aenm.201703505

Huang, 2017, Nano Energy, 38, 504, 10.1016/j.nanoen.2017.06.030

Xiao, 2019, J. Mater. Chem. A, 7, 22730, 10.1039/C9TA08600E

Wang, 2020, Nano Energy, 74

Wang, 2019, Nat. Commun., 10, 1, 10.1038/s41467-018-07882-8

Louli, 2021, J. Electrochem. Soc., 168, 10.1149/1945-7111/abe089

Tian, 2020, Nano Energy

Zhang, 2020, Chem. Rev., 120, 13312, 10.1021/acs.chemrev.0c00275

Schmuch, 2018, Nat. Energy, 3, 267, 10.1038/s41560-018-0107-2

Neudecker, 2000, J. Electrochem. Soc., 147, 517, 10.1149/1.1393226

Qian, 2016, Adv. Funct. Mater., 26, 7094, 10.1002/adfm.201602353

Nanda, 2021, Adv. Energy Mater., 11, 2000804, 10.1002/aenm.202000804

Huang, 2021, Nat. Commun., 12, 1, 10.1038/s41467-020-20314-w

Yu, 2020, Nat. Energy, 5, 526, 10.1038/s41560-020-0634-5

Pande, 2019, ACS Energy Lett., 4, 2952, 10.1021/acsenergylett.9b02306

Umh, 2019, Electrochem. Commun., 99, 27, 10.1016/j.elecom.2018.12.015

Assegie, 2018, Nanoscale, 10, 6125, 10.1039/C7NR09058G

Louli, 2019, J. Electrochem. Soc., 166, A1291, 10.1149/2.0091908jes

Genovese, 2019, J. Electrochem. Soc., 166, A3342, 10.1149/2.0661914jes

Weber, 2019, Nat. Energy, 4, 683, 10.1038/s41560-019-0428-9

Choi, 2017, Science, 357, 279, 10.1126/science.aal4373

Wang, 2012, Adv. Energy Mater., 2, 770, 10.1002/aenm.201200100

Zhang, 2018, Energy Environ. Mater., 1, 61, 10.1002/eem2.12008

Lee, 2020, Nat. Energy, 5, 299, 10.1038/s41560-020-0575-z

Guo, 2021, J. Energy Chem., 54, 746, 10.1016/j.jechem.2020.06.026

Hong, 2021, J. Energy Chem.