N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries
Tài liệu tham khảo
Goodenough, 2013, J Am Chem Soc, 135, 1167, 10.1021/ja3091438
Dunn, 2011, Science, 334, 928, 10.1126/science.1212741
Y. Zhang, D. Jia, Y. Tang, Y. Huang, W. Pang, Small 14 (2018) 1704354-1704361. (2018).
An, 2019, Nat. Commun., 10, 1447, 10.1038/s41467-019-09510-5
Zhang, 2018, Energy Environ. Sci., 11, 669, 10.1039/C8EE00239H
Wang, 2016, J. Mater. Chem. A, 4, 13907, 10.1039/C6TA05091C
Zhang, 2016, J. Energy Chem., 25, 967, 10.1016/j.jechem.2016.11.003
Liu, 2019, J. Energy Chem., 33, 160, 10.1016/j.jechem.2018.09.006
Zheng, 2020, J. Energy Chem., 41, 126, 10.1016/j.jechem.2019.05.009
Li, 2020, J. Energy Chem., 40, 15, 10.1016/j.jechem.2019.02.010
Yoshio, 2004, J. Mater. Chem. A, 14, 1754, 10.1039/b316702j
Xia, 2020, ACS Nano, 14, 5111, 10.1021/acsnano.0c01976
Han, 2020, J. Power Sources, 463, 228245, 10.1016/j.jpowsour.2020.228245
Beattie, 2008, J. Electrochem. Soc, 155, A158, 10.1149/1.2817828
Mukanova, 2018, Mater. Today, Energy, 9, 49
Liu, 2018, Chem. Eng. J., 343, 78, 10.1016/j.cej.2018.02.111
Wang, 2010, ACS Nano, 4, 2233, 10.1021/nn901632g
Zheng, 2018, Nanoscale, 10, 22203, 10.1039/C8NR07207H
Hieu, 2012, Microelectronic Eng., 89, 138, 10.1016/j.mee.2011.03.142
Chockla, 2011, J. Am. Chem. Soc., 133, 20914, 10.1021/ja208232h
Wu, 2012, Nat. Nanotech., 7, 310, 10.1038/nnano.2012.35
An, 2018, Green, ACS Nano, 12, 4993, 10.1021/acsnano.8b02219
Lu, 2011, Chem. Mater., 23, 5293, 10.1021/cm202891p
Gohier, 2012, Adv. Mater., 24, 2592, 10.1002/adma.201104923
Chen, 2020, Angew Chem Int Ed Engl, 59, 3137, 10.1002/anie.201915502
Zheng, 2018, Adv. Funct. Mater., 28, 1804950, 10.1002/adfm.201804950
Liu, 2019, Energy Storage Mater., 18, 165, 10.1016/j.ensm.2018.09.019
Bai, 2018, Small Methods, 2, 1800049, 10.1002/smtd.201800049
Park, 2006, Proc. Natl. Acad. Sci. USA, 103, 10186, 10.1073/pnas.0602439103
Zhang, 2018, J. Power Sources, 377, 136, 10.1016/j.jpowsour.2017.12.002
Choi, 2015, ACS Nano, 9, 10173, 10.1021/acsnano.5b03822
Xia, 2016, J. Mater. Chem. A, 4, 17543, 10.1039/C6TA06699B
Mao, 2012, Energy Environ. Sci., 5, 7950, 10.1039/c2ee21817h
Bai, 2019, Nanomaterials (Basel), 9, 650, 10.3390/nano9040650
Yoon, 2017, ACS Nano, 11, 4808, 10.1021/acsnano.7b01185
Wang, 2018, Small, 14, 1804183, 10.1002/smll.201804183
Hu, 2019, J. Energy Chem, 32, 124, 10.1016/j.jechem.2018.07.008
Gauthier, 2013, Energy Environ. Sci., 6, 2145, 10.1039/c3ee41318g
Bhattacharjya, 2014, Langmuir, 30, 318, 10.1021/la403366e
Chen, 2013, Nano Energy, 2, 412, 10.1016/j.nanoen.2012.11.010
Zhang, 2011, J. Mater. Chem. A, 21, 6494, 10.1039/c1jm10239g
Zhou, 2013, ACS Nano, 7, 5367, 10.1021/nn401228t
Shi, 2014, J. Mater. Chem. A, 2, 20213, 10.1039/C4TA03561E
Wang, 2018, Carbon, 127, 85, 10.1016/j.carbon.2017.10.084
Cai, 2016, J. Mater. Chem. A, 4, 9949, 10.1039/C6TA03162E
Zhao, 2020, Carbon, 156, 445, 10.1016/j.carbon.2019.09.065
Zhou, 2012, Chem. Commun., 48, 2198, 10.1039/c2cc17061b
Xu, 2015, Adv. Energy Mater., 5, 1400753, 10.1002/aenm.201400753
Lin, 2016, Nanoscale, 8, 1280, 10.1039/C5NR07152F
Luo, 2016, Carbon, 98, 373, 10.1016/j.carbon.2015.11.031
Chen, 2017, J. Power Sources, 342, 467, 10.1016/j.jpowsour.2016.12.089
Zhu, 2013, Langmuir, 29, 744, 10.1021/la304371d
Wen, 2013, Small, 9, 2810, 10.1002/smll.201202512
Veith, 2014, Chem. Commun., 50, 3081, 10.1039/c3cc49269a
Liu, 2020, Nanoscale Horiz., 5, 150, 10.1039/C9NH00402E
Shin, 2020, Energy Storage Mater., 25, 764, 10.1016/j.ensm.2019.09.009
Zhao, 2018, ACS Nano, 12, 12597, 10.1021/acsnano.8b07319
Zhang, 2019, Mater. Today Energy, 12, 303, 10.1016/j.mtener.2019.02.003
Xia, 2018, J. Mater. Chem. A, 6, 15546, 10.1039/C8TA06232C
Zhang, 2016, Nano Energy, 25, 120, 10.1016/j.nanoen.2016.04.043
Wu, 2019, Nanoscale, 11, 12210, 10.1039/C9NR03255J