Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries

Joule - Tập 3 - Trang 1094-1105 - 2019
Shuru Chen1, Chaojiang Niu1, Hongkyung Lee1, Qiuyan Li1, Lu Yu1, Wu Xu1, Ji-Guang Zhang1, Eric J. Dufek2, M. Stanley Whittingham3, Shirley Meng4, Jie Xiao1,5, Jun Liu1
1Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
2Clean Energy & Transportation Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
3Department of Materials Science and Engineering, Binghamton University, Binghamton, NY 13902, USA
4Department of NanoEngineering, University of California, San Diego, San Diego, CA 92093, USA
5Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA

Tài liệu tham khảo

Whittingham, 2014, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 114, 11414, 10.1021/cr5003003 Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30 Duduta, 2011, Semi-solid lithium rechargeable flow battery, Adv. Energy Mater., 1, 511, 10.1002/aenm.201100152 Zhao, 2013, High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode, Nat. Commun., 4, 1896, 10.1038/ncomms2907 Wengao, 2018, High voltage operation of Ni-Rich NMC cathodes enabled by stable electrode/electrolyte interphases, Adv. Energy Mater., 8, 1800297, 10.1002/aenm.201800297 Rozier, 2015, Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges, J. Electrochem. Soc., 162, A2490, 10.1149/2.0111514jes Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460 Jung, 2012, An improved high-performance lithium-air battery, Nat. Chem., 4, 579, 10.1038/nchem.1376 Radin, 2017, Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials, Adv. Energy Mater., 7, 1602888, 10.1002/aenm.201602888 Adams, 2018, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries, Adv. Energy Mater., 8, 1702097, 10.1002/aenm.201702097 Zhang, 2018, Problem, status, and possible solutions for lithium metal anode of rechargeable batteries, ACS Appl. Energy Mater., 1, 910, 10.1021/acsaem.8b00055 Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115 Liu, 2018, Advancing lithium metal batteries, Joule, 2, 833, 10.1016/j.joule.2018.03.008 Hagen, 2015, Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells, Adv. Energy Mater., 5, 1401986, 10.1002/aenm.201401986 Aurbach, 1997, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems, J. Power Sources, 68, 91, 10.1016/S0378-7753(97)02575-5 Aurbach, 2002, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148, 405, 10.1016/S0167-2738(02)00080-2 Lu, 2015, Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes, Adv. Energy Mater., 5, 1400993, 10.1002/aenm.201400993 Markevich, 2017, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Lett., 2, 1321, 10.1021/acsenergylett.7b00300 Albertus, 2018, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2 Wang, 2018, Fundamental understanding and rational design of high energy structural microbatteries, Nano Energy, 43, 310, 10.1016/j.nanoen.2017.11.046 Wood, 2016, Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy, ACS Cent. Sci., 2, 790, 10.1021/acscentsci.6b00260 Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362 Chen, 2018, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes, Adv. Mater., 30, e1706102, 10.1002/adma.201706102 Zhang, 2014, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14, 6889, 10.1021/nl5039117 Chen, 2016, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Mater. Horiz., 3, 487, 10.1039/C6MH00218H Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Manthiram, 2017, An outlook on lithium ion battery technology, ACS Cent. Sci., 3, 1063, 10.1021/acscentsci.7b00288 Gallagher, 2016, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes