A mini-review on the development of Si-based thin film anodes for Li-ion batteries

Materials Today Energy - Tập 9 - Trang 49-66 - 2018
Aliya Mukanova1,2, Albina Jetybayeva1,2, Seung-Taek Myung3, Sung-Soo Kim4, Zhumabay Bakenov1,2
1National Laboratory Astana, School of Engineering, Nazarbayev University, 53 Kabanbay Batyr Av., Astana 010000 Kazakhstan
2Institute of Batteries, 53 Kabanbay Batyr Ave., Astana 010000 Kazakhstan
3Department of Nano Technology and Advanced Materials Engineering, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
4Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak Ave., Yuseong-gu, Daejeon, 34134, South Korea

Tài liệu tham khảo

Zuo, 2017, Silicon based lithium-ion battery anodes: a chronicle perspective review, Nanomater. Energy, 31, 113, 10.1016/j.nanoen.2016.11.013 Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020 Meister, 2016, Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency, Chem. Mater., 28, 7203, 10.1021/acs.chemmater.6b02895 Obrovac, 2007, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154, A103, 10.1149/1.2402112 Obrovac, 2004, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid State Lett., 7, A93, 10.1149/1.1652421 Kwon, 2010, Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries, Electrochim. Acta, 55, 8051, 10.1016/j.electacta.2010.01.054 Graetz, 2003, Highly reversible lithium storage in nanostructured silicon, Electrochem. Solid State Lett., 6, A194, 10.1149/1.1596917 Bourderau, 1999, Amorphous silicon as a possible anode material for Li-ion batteries, J. Power Sources, 81–82, 233, 10.1016/S0378-7753(99)00194-9 Maranchi, 2003, High capacity, reversible silicon thin-film anodes for lithium-ion batteries, Electrochem. Solid State Lett., 6, A198, 10.1149/1.1596918 Casimir, 2016, Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation, Nanomater. Energy, 27, 359, 10.1016/j.nanoen.2016.07.023 Shin, 2005, Porous silicon negative electrodes for rechargeable lithium batteries, J. Power Sources, 139, 314, 10.1016/j.jpowsour.2004.06.073 Lithiation, 2012, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522, 10.1021/nn204476h Jung, 2016, Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-Ion batteries, J. Electrochem. Soc., 163, A1705, 10.1149/2.0951608jes Chen, 2013, Recent progress in advanced materials for lithium ion batteries, Materials (Basel), 6, 156, 10.3390/ma6010156 Dudney, 2008, Thin film micro-batteries, Electrochem. Soc. Interface, 17, 44, 10.1149/2.F04083IF Ferrari, 2015, Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources, 286, 25, 10.1016/j.jpowsour.2015.03.133 Jones, 1994, Thin film rechargeable Li batteries, Solid State Ionics, 69, 357, 10.1016/0167-2738(94)90423-5 Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084 Szczech, 2011, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 4, 56, 10.1039/C0EE00281J Hatchard, 2004, In Situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151, A838, 10.1149/1.1739217 Ma, 2014, Si-based anode materials for Li-ion batteries: a mini review, Nano-Micro Lett., 6, 347, 10.1007/s40820-014-0008-2 Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-metal anodes, J. Power Sources, 119–121, 604, 10.1016/S0378-7753(03)00303-3 Bordes, 2015, Investigation of lithium insertion mechanisms of a thin-film Si electrode by coupling time-of-flight secondary-ion mass spectrometry, x-ray photoelectron spectroscopy, and focused-ion-beam/SEM, ACS Appl. Mater. Interfaces, 7, 27853, 10.1021/acsami.5b09261 Guo, 2006, A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries, Mater. Sci. Eng. B, 131, 173, 10.1016/j.mseb.2006.04.008 Chen, 2009, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries, J. Appl. Electrochem., 39, 1157, 10.1007/s10800-008-9774-1 Yoshimura, 2005, Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode, J. Power Sources, 146, 445, 10.1016/j.jpowsour.2005.03.050 Kulova, 2006, Lithium intercalation into amorphous-silicon thin films: an electrochemical-impedance study, Russ. J. Electrochem., 42, 708, 10.1134/S1023193506070032 Kulova, 2007, The Li insertion/extraction characteristics of amorphous silicon thin films, Chembiochem Q, 21, 83 Reyes Jiménez, 2017, A step toward high-energy silicon-based thin film lithium ion batteries, ACS Nano, 11, 4731, 10.1021/acsnano.7b00922 Strauß, 2016, Lithium permeation through thin lithium-silicon films for battery applications investigated by neutron reflectometry, Energy Technol., 4, 1582, 10.1002/ente.201600209 Xia, 2007, Properties of amorphous Si thin film anodes prepared by pulsed laser deposition, Mater. Res. Bull., 42, 1301, 10.1016/j.materresbull.2006.10.007 Arie, 2012, Estimation of Li-Ion diffusion coefficients in C60 coated Si thin film anodes using electrochemical techniques, Defect Diffusion Forum, 326–328, 87, 10.4028/www.scientific.net/DDF.326-328.87 Lee, 2001, Stress effect on cycle properties of the silicon thin-film anode, J, Power Sources, 97–98, 191, 10.1016/S0378-7753(01)00761-3 Gwak, 2016, Multi-scale analysis of an electrochemical model including coupled diffusion, stress, and nonideal solution in a silicon thin film anode, J. Power Sources, 307, 856, 10.1016/j.jpowsour.2016.01.037 Zhao, 2008 Pal, 2013, Modeling of lithium segregation induced delamination of a-Si thin film anode in Li-ion batteries, Comput. Mater. Sci., 79, 877, 10.1016/j.commatsci.2013.06.051 Patel, 2011 Shaffer, 2011 Jerliu, 2014, Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in-operando neutron reflectometry, J. Phys. Chem. C, 118, 9395, 10.1021/jp502261t Pereira-Nabais, 2014, Effect of lithiation potential and cycling on chemical and morphological evolution of si thin film electrode studied by ToF-SIMS, ACS Appl. Mater. Interfaces, 6, 13023, 10.1021/am502913q Breitung, 2016, In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries, Nanoscale, 8, 14048, 10.1039/C6NR03575B Ruffo, 2009, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 113, 11390, 10.1021/jp901594g Jung, 2003, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries, Solid State Commun., 125, 387, 10.1016/S0038-1098(02)00849-9 Jung, 2003, Amorphous silicon anode for lithium-ion rechargeable batteries, J. Power Sources, 115, 346, 10.1016/S0378-7753(02)00707-3 Maranchi, 2006, Interfacial properties of the a-Si∕Cu:active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153, A1246, 10.1149/1.2184753 Tocoglu, 2013, Nanostructured silicon thin film electrodes for li-ion batteries, Acta Phys. Pol. A, 123, 380, 10.12693/APhysPolA.123.380 Moon, 2006, Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries, J. Power Sources, 155, 391, 10.1016/j.jpowsour.2005.05.012 Park, 2006, Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries, Electrochim. Acta, 51, 5246, 10.1016/j.electacta.2006.01.045 Omampuliyur, 2015, Nanostructured thin film silicon anodes for Li-Ion microbatteries, J. Nanosci. Nanotechnol., 15, 4926, 10.1166/jnn.2015.9831 Li, 2011, Crack pattern formation in thin film lithium-ion battery electrodes, J. Electrochem. Soc., 158, A689, 10.1149/1.3574027 Ohara, 2003, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources, 119–121, 591, 10.1016/S0378-7753(03)00301-X Ohara, 2004, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136, 303, 10.1016/j.jpowsour.2004.03.014 Takamura, 2004, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources, 129, 96, 10.1016/j.jpowsour.2003.11.014 Arie, 2013, Electrochemical properties of P-Doped silicon thin film anodes of lithium ion batteries, Mater. Sci. Forum, 737, 80, 10.4028/www.scientific.net/MSF.737.80 Baranchugov, 2007, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes, Electrochem. Commun., 9, 796, 10.1016/j.elecom.2006.11.014 Kim, 2014, Electrochemical properties of a full cell of lithium iron phosphate cathode using thin amorphous silicon anode, Solid State Ionics, 268, 256, 10.1016/j.ssi.2014.10.010 Lee, 2004, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries, J. Power Sources, 129, 270, 10.1016/j.jpowsour.2003.10.013 Deng, 2007, Effect of substrate surface conditions on electrochemical performance of Si thin film anode, ECS Trans., 2, 105, 10.1149/1.2424293 Uehara, 2005, Thick vacuum deposited silicon films suitable for the anode of Li-ion battery, J. Power Sources, 146, 441, 10.1016/j.jpowsour.2005.03.097 Zhang, 2008, The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity, Electrochim. Acta, 53, 5660, 10.1016/j.electacta.2008.03.017 Demirkan, 2015, Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 273, 52, 10.1016/j.jpowsour.2014.09.027 Wang, 2016, Facile synthesis of multilayer-like Si thin film as high-performance anode materials for lithium-ion batteries, Appl. Phys. A, 122, 528, 10.1007/s00339-016-0068-x Cho, 2012, Patterned Si thin film electrodes for enhancing structural stability, Nanoscale Res. Lett., 7, 20, 10.1186/1556-276X-7-20 Cho, 2012, Improved electrochemical properties of patterned Si film electrodes, Microelectron. Eng., 89, 104, 10.1016/j.mee.2011.03.141 Xiao, 2011, Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries, J. Power Sources, 196, 1409, 10.1016/j.jpowsour.2010.08.058 Cho, 2017, Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries, Electrochim. Acta, 224, 649, 10.1016/j.electacta.2016.12.067 Jeong, 2017, Annealing effect on electrochemical properties of patterned Si film electrodes for thin-film batteries, Curr. Appl. Phys., 1 Yu, 2012, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater, 2, 68, 10.1002/aenm.201100634 Baggetto, 2011, Honeycomb-structured silicon: remarkable morphological changes induced by electrochemical (De)lithiation, Adv. Mater., 23, 1563, 10.1002/adma.201003665 Wang, 2018, Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries, Ionics, 24, 373, 10.1007/s11581-017-2219-2 Fujitani, 2003, New a-Si alloy thin film anode with self organized micro columnar structure, Electrochem. Soc., 1 Ge, 2012, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 12, 2318, 10.1021/nl300206e Lin, 2015, Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity, RSC Adv., 5, 87090, 10.1039/C5RA13568K Mukanova, 2018, N-type doped silicon thin film on a porous Cu current collector as the negative electrode for Li-Ion batteries, ChemistryOpen, 7, 92, 10.1002/open.201700162 Dogan, 2015, Electrodeposited copper foams as substrates for thin film silicon electrodes, Solid State Ionics, 288, 204, 10.1016/j.ssi.2016.02.001 Huang, 2016, Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries, Electrochim. Acta, 203, 213, 10.1016/j.electacta.2016.04.041 Chen, 2011, A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector, Adv. Funct. Mater., 21, 380, 10.1002/adfm.201001475 Song, 2007, A study on the effect of structure and P-doping of Si thin film as an anode for lithium rechargeable batteries, Adv. Nanomater. Process, 124–126, 1063 Ahn, 2006, Formation and characterization of Cu-Si nanocomposite electrodes for rechargeable Li batteries, J. Power Sources, 163, 211, 10.1016/j.jpowsour.2005.12.077 Polat, 2015, Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery, Thin Solid Films, 596, 190, 10.1016/j.tsf.2015.09.085 Hwang, 2009, Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries, J. Power Sources, 194, 1061, 10.1016/j.jpowsour.2009.05.047 Kim, 2003, Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries, Electrochem. Commun., 5, 544, 10.1016/S1388-2481(03)00120-6 Kim, 2005, Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries, Electrochim. Acta, 50, 3390, 10.1016/j.electacta.2004.12.021 Zhang, 2016, 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery, J. Alloy. Comp., 657, 559, 10.1016/j.jallcom.2015.10.123 Liu, 2015, The electrochemistry of amorphous Si-B thin film electrodes in Li cells, J. Electrochem. Soc., 163, A192, 10.1149/2.0451602jes Li, 2012, Si-Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries, J. Power Sources, 217, 102, 10.1016/j.jpowsour.2012.05.080 Guo, 2014, Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries, J. Power Sources, 248, 1141, 10.1016/j.jpowsour.2013.09.138 Wen, 2013, Cu-doped silicon film as anode for lithium ion batteries prepared by ion-beam sputtering, Int. J. Electrochem. Sci., 8, 10129, 10.1016/S1452-3981(23)13099-9 Wang, 2012, Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries, J. Power Sources, 202, 236, 10.1016/j.jpowsour.2011.11.027 Sethuraman, 2011, Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries, J. Power Sources, 196, 393, 10.1016/j.jpowsour.2010.06.043 Hieu, 2014, Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer, J. Appl. Electrochem., 44, 353, 10.1007/s10800-013-0648-9 Datta, 2011, Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries, Electrochim. Acta, 56, 4717, 10.1016/j.electacta.2011.01.124 Garino, 2015, Mesoporous Si and multi-layered Si/C films by pulsed laser deposition as Li-Ion microbattery anodes, J. Electrochem. Soc., 162, A1816, 10.1149/2.0531509jes Arie, 2009, Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries, Mater. Chem. Phys., 113, 249, 10.1016/j.matchemphys.2008.07.082 Biserni, 2015, Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method, J. Power Sources, 274, 252, 10.1016/j.jpowsour.2014.09.140 Wu, 2016, Silicon nitride coated silicon thin fi lm on three dimensions current collector for lithium ion battery anode, J. Power Sources, 325, 64, 10.1016/j.jpowsour.2016.06.025 Haro, 2017, Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-Ion batteries, Adv. Sci., 10.1002/advs.201700180 Tong, 2014, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries, J. Power Sources, 247, 78, 10.1016/j.jpowsour.2013.08.087 Xu, 2015, Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires, J. Power Sources, 281, 455, 10.1016/j.jpowsour.2015.02.023 Brumbarov, 2014, Silicon on conductive self-organized TiO2 nanotubes – a high capacity anode material for Li-ion batteries, J. Power Sources, 258, 129, 10.1016/j.jpowsour.2014.02.049 Lin, 2016, Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer, J. Power Sources, 336, 401, 10.1016/j.jpowsour.2016.11.012 Sun, 2014, Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries, J. Power Sources, 268, 610, 10.1016/j.jpowsour.2014.06.039 Toçoğlu, 2016, Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering, Appl. Surf. Sci., 389, 507, 10.1016/j.apsusc.2016.07.135 Mukanova, 2017, Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries, Electrochim. Acta, 258, 800, 10.1016/j.electacta.2017.11.129 Chiu, 2015, Silicon thin film anodes coated on micron carbon-fiber current collectors for lithium ion batteries, Surf. Coating. Technol., 267, 70, 10.1016/j.surfcoat.2014.10.059 Zhang, 2012, Silicon/graphene-sheet hybrid fi lm as anode for lithium ion batteries, Electrochem. Commun., 23, 17, 10.1016/j.elecom.2012.07.001 Radhakrishnan, 2013, Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries, Apl. Mater., 1, 62103, 10.1063/1.4834735 Sun, 2016, Binder-free graphene as advanced anode for lithium batteries Haiyan, J. Mater. Chem. A, 4, 6886, 10.1039/C5TA08553E Sonia, 2017, Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study, J. Mater. Chem. A Mater. Energy Sustain., 5, 8662, 10.1039/C7TA01978E Paronyan, 2017, Incommensurate graphene foam as a high capacity lithium intercalation anode, Sci. Rep., 7, 39944, 10.1038/srep39944 Sun, 2016, Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance, Electrochim. Acta, 191, 462, 10.1016/j.electacta.2016.01.096 Hu, 2014, Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries, J. Mater. Chem. A, 2, 9118, 10.1039/C4TA01013B Custer, 1994, Density of amorphous Si, Appl. Phys. Lett., 64, 437, 10.1063/1.111121 Choi, 2017, Novel strategy to improve the Li-storage performance of micro silicon anodes, J. Power Sources, 348, 302, 10.1016/j.jpowsour.2017.03.020 Liang, 2016, A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries, ACS Nano, 10, 2295, 10.1021/acsnano.5b06995 Chan, 2009, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 189, 1132, 10.1016/j.jpowsour.2009.01.007 Choi, 2007, Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte, J. Power Sources, 172, 404, 10.1016/j.jpowsour.2007.07.058 Choi, 2006, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161, 1254, 10.1016/j.jpowsour.2006.05.049 Fridman, 2013, A new advanced lithium ion battery: combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn15O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution, Electrochem. Commun., 33, 31, 10.1016/j.elecom.2013.04.010 Chen, 2006, Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive, Electrochem. Solid State Lett., 9, A512, 10.1149/1.2338771 Kulova, 2008, Irreversible capacity of the amorphous silicon thin-film electrodes, Russ. J. Electrochem., 44, 525, 10.1134/S1023193508050042 Song, 2009, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochem. Solid State Lett., 12, A23, 10.1149/1.3028216 Ryu, 2008, Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives, J. Electrochem. Soc., 155, A583, 10.1149/1.2940310 Teng, 2015, In-situ analysis of gas generation in lithium ion batteries with different carbonate-based electrolytes, ACS Appl. Mater. Interfaces, 7, 22751, 10.1021/acsami.5b08399 Winter, 1998, Chloroethylene carbonate, a solvent for lithium-ion cells, evolving CO2 during reduction, J. Electrochem. Soc., 145, L27, 10.1149/1.1838270 Schiele, 2017, The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries, ACS Energy Lett., 2, 2228, 10.1021/acsenergylett.7b00619 Spahr, 2004, Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes, J. Electrochem. Soc., 151, A1383, 10.1149/1.1775224 Hancock, 2018, Electrolyte decomposition and electrode thickness changes in Li-S cells with lithium metal anodes, prelithiated silicon anodes and hard carbon anodes, J. Electrochem. Soc., 165, A6091, 10.1149/2.0161801jes Takada, 2013, Progress and prospective of solid-state lithium batteries, Acta Mater., 61, 759, 10.1016/j.actamat.2012.10.034 Ohta, 2012, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 202, 332, 10.1016/j.jpowsour.2011.10.064 Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076 Whittingham, 2004, Lithium batteries and cathode materials, Chem. Rev., 104, 4271, 10.1021/cr020731c Miyazaki, 2016, Anode properties of silicon-rich amorphous silicon suboxide fi lms in all-solid-state lithium batteries, J. Power Sources, 329, 41, 10.1016/j.jpowsour.2016.08.070 Oudenhoven, 2011, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts, Adv. Energy Mater., 1, 10, 10.1002/aenm.201000002 Baggetto, 2008, High energy density all-solid-state batteries: a challenging concept towards 3D integration, Adv. Funct. Mater., 18, 1057, 10.1002/adfm.200701245 Le Cras, 2015, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect, Adv. Energy Mater, 5, 1501061, 10.1002/aenm.201501061 Phan, 2012, High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater., 22, 2580, 10.1002/adfm.201200104 Gong, 2015, Surface/interface effects on high-performance thin-film all-solid-state Li-Ion batteries, ACS Appl. Mater. Interfaces, 7, 26007, 10.1021/acsami.5b07058 Talin, 2016, Fabrication, testing, and simulation of all-solid-state three-dimensional Li-Ion batteries, ACS Appl. Mater. Interfaces, 8, 32385, 10.1021/acsami.6b12244 Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066 Tan, 2012, Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery, ECS Solid State Lett., 1, Q57, 10.1149/2.013206ssl Chen, 2014, Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries, J. Mater. Chem. A, 2, 13277, 10.1039/C4TA02289K Choi, 2002, Radio-frequency magnetron sputtering power effect on the ionic conductivities of lipon films, Electrochem. Solid State Lett., 5, A14, 10.1149/1.1420926 Lobe, 2016, Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries, J. Power Sources, 307, 684, 10.1016/j.jpowsour.2015.12.054 Jee, 2010, Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries, Solid State Ionics, 181, 902, 10.1016/j.ssi.2010.04.017 Hamon, 2006, Influence of sputtering conditions on ionic conductivity of LiPON thin films, Solid State Ionics, 177, 257, 10.1016/j.ssi.2005.10.021 Torres, 2014, In situ generation of mesostructured Cu2S/C composite cathode via electrochemical reaction for enhanced lithium storage and insights into the mechanism, ChemElectroChem, 1, 375 Kim, 2013, Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte, Dalt. Trans., 42, 13112, 10.1039/c3dt51795k Swann, 1988, Magnetron sputtering, Phys. Technol., 19, 67, 10.1088/0305-4624/19/2/304 2016 Bäuerle, 1999, Pulsed laser deposition, Appl. Phys. A Mater. Sci. Process, 69, S45, 10.1007/s003399900178 Schwarzacher, 2006, Electrodeposition: a technology for the future, Electrochem. Soc. Interface, 15, 32, 10.1149/2.F08061IF Epur, 2012, Electrodeposition of amorphous silicon anode for lithium ion batteries, Mater. Sci. Eng. B, 177, 1157, 10.1016/j.mseb.2012.04.027 Gattu, 2017, Pulsed current electrodeposition of silicon thin films anodes for lithiums ion battery applications, Inorg. Artic., 5, 1 Vlaic, 2015, Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid, Electrochim. Acta, 168, 403, 10.1016/j.electacta.2015.03.216 Mukanova, 2017, CVD graphene growth on a surface of liquida gallium, Mater. Today Proc., 4, 4548, 10.1016/j.matpr.2017.04.028 Colston, 2016, Mapping the strain state of 3C-SiC/Si (001) suspended structures using, Mater. Sci. Forum, 858, 274, 10.4028/www.scientific.net/MSF.858.274 Ferraresi, 2016, Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-Ion batteries, ACS Appl. Mater. Interfaces, 8, 29791, 10.1021/acsami.6b10929 Pereira-Nabais, 2013, Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Appl. Surf. Sci., 266, 5, 10.1016/j.apsusc.2012.10.165 Vovk, 2009, Electrochemical characteristics of amophous carbon coated silicon electrodes, Korean J. Chem. Eng., 26, 1034, 10.1007/s11814-009-0172-0