A mini-review on the development of Si-based thin film anodes for Li-ion batteries
Tài liệu tham khảo
Zuo, 2017, Silicon based lithium-ion battery anodes: a chronicle perspective review, Nanomater. Energy, 31, 113, 10.1016/j.nanoen.2016.11.013
Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020
Meister, 2016, Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency, Chem. Mater., 28, 7203, 10.1021/acs.chemmater.6b02895
Obrovac, 2007, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154, A103, 10.1149/1.2402112
Obrovac, 2004, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid State Lett., 7, A93, 10.1149/1.1652421
Kwon, 2010, Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries, Electrochim. Acta, 55, 8051, 10.1016/j.electacta.2010.01.054
Graetz, 2003, Highly reversible lithium storage in nanostructured silicon, Electrochem. Solid State Lett., 6, A194, 10.1149/1.1596917
Bourderau, 1999, Amorphous silicon as a possible anode material for Li-ion batteries, J. Power Sources, 81–82, 233, 10.1016/S0378-7753(99)00194-9
Maranchi, 2003, High capacity, reversible silicon thin-film anodes for lithium-ion batteries, Electrochem. Solid State Lett., 6, A198, 10.1149/1.1596918
Casimir, 2016, Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation, Nanomater. Energy, 27, 359, 10.1016/j.nanoen.2016.07.023
Shin, 2005, Porous silicon negative electrodes for rechargeable lithium batteries, J. Power Sources, 139, 314, 10.1016/j.jpowsour.2004.06.073
Lithiation, 2012, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522, 10.1021/nn204476h
Jung, 2016, Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-Ion batteries, J. Electrochem. Soc., 163, A1705, 10.1149/2.0951608jes
Chen, 2013, Recent progress in advanced materials for lithium ion batteries, Materials (Basel), 6, 156, 10.3390/ma6010156
Dudney, 2008, Thin film micro-batteries, Electrochem. Soc. Interface, 17, 44, 10.1149/2.F04083IF
Ferrari, 2015, Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources, 286, 25, 10.1016/j.jpowsour.2015.03.133
Jones, 1994, Thin film rechargeable Li batteries, Solid State Ionics, 69, 357, 10.1016/0167-2738(94)90423-5
Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084
Szczech, 2011, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 4, 56, 10.1039/C0EE00281J
Hatchard, 2004, In Situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151, A838, 10.1149/1.1739217
Ma, 2014, Si-based anode materials for Li-ion batteries: a mini review, Nano-Micro Lett., 6, 347, 10.1007/s40820-014-0008-2
Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-metal anodes, J. Power Sources, 119–121, 604, 10.1016/S0378-7753(03)00303-3
Bordes, 2015, Investigation of lithium insertion mechanisms of a thin-film Si electrode by coupling time-of-flight secondary-ion mass spectrometry, x-ray photoelectron spectroscopy, and focused-ion-beam/SEM, ACS Appl. Mater. Interfaces, 7, 27853, 10.1021/acsami.5b09261
Guo, 2006, A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries, Mater. Sci. Eng. B, 131, 173, 10.1016/j.mseb.2006.04.008
Chen, 2009, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries, J. Appl. Electrochem., 39, 1157, 10.1007/s10800-008-9774-1
Yoshimura, 2005, Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode, J. Power Sources, 146, 445, 10.1016/j.jpowsour.2005.03.050
Kulova, 2006, Lithium intercalation into amorphous-silicon thin films: an electrochemical-impedance study, Russ. J. Electrochem., 42, 708, 10.1134/S1023193506070032
Kulova, 2007, The Li insertion/extraction characteristics of amorphous silicon thin films, Chembiochem Q, 21, 83
Reyes Jiménez, 2017, A step toward high-energy silicon-based thin film lithium ion batteries, ACS Nano, 11, 4731, 10.1021/acsnano.7b00922
Strauß, 2016, Lithium permeation through thin lithium-silicon films for battery applications investigated by neutron reflectometry, Energy Technol., 4, 1582, 10.1002/ente.201600209
Xia, 2007, Properties of amorphous Si thin film anodes prepared by pulsed laser deposition, Mater. Res. Bull., 42, 1301, 10.1016/j.materresbull.2006.10.007
Arie, 2012, Estimation of Li-Ion diffusion coefficients in C60 coated Si thin film anodes using electrochemical techniques, Defect Diffusion Forum, 326–328, 87, 10.4028/www.scientific.net/DDF.326-328.87
Lee, 2001, Stress effect on cycle properties of the silicon thin-film anode, J, Power Sources, 97–98, 191, 10.1016/S0378-7753(01)00761-3
Gwak, 2016, Multi-scale analysis of an electrochemical model including coupled diffusion, stress, and nonideal solution in a silicon thin film anode, J. Power Sources, 307, 856, 10.1016/j.jpowsour.2016.01.037
Zhao, 2008
Pal, 2013, Modeling of lithium segregation induced delamination of a-Si thin film anode in Li-ion batteries, Comput. Mater. Sci., 79, 877, 10.1016/j.commatsci.2013.06.051
Patel, 2011
Shaffer, 2011
Jerliu, 2014, Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in-operando neutron reflectometry, J. Phys. Chem. C, 118, 9395, 10.1021/jp502261t
Pereira-Nabais, 2014, Effect of lithiation potential and cycling on chemical and morphological evolution of si thin film electrode studied by ToF-SIMS, ACS Appl. Mater. Interfaces, 6, 13023, 10.1021/am502913q
Breitung, 2016, In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries, Nanoscale, 8, 14048, 10.1039/C6NR03575B
Ruffo, 2009, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 113, 11390, 10.1021/jp901594g
Jung, 2003, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries, Solid State Commun., 125, 387, 10.1016/S0038-1098(02)00849-9
Jung, 2003, Amorphous silicon anode for lithium-ion rechargeable batteries, J. Power Sources, 115, 346, 10.1016/S0378-7753(02)00707-3
Maranchi, 2006, Interfacial properties of the a-Si∕Cu:active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153, A1246, 10.1149/1.2184753
Tocoglu, 2013, Nanostructured silicon thin film electrodes for li-ion batteries, Acta Phys. Pol. A, 123, 380, 10.12693/APhysPolA.123.380
Moon, 2006, Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries, J. Power Sources, 155, 391, 10.1016/j.jpowsour.2005.05.012
Park, 2006, Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries, Electrochim. Acta, 51, 5246, 10.1016/j.electacta.2006.01.045
Omampuliyur, 2015, Nanostructured thin film silicon anodes for Li-Ion microbatteries, J. Nanosci. Nanotechnol., 15, 4926, 10.1166/jnn.2015.9831
Li, 2011, Crack pattern formation in thin film lithium-ion battery electrodes, J. Electrochem. Soc., 158, A689, 10.1149/1.3574027
Ohara, 2003, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources, 119–121, 591, 10.1016/S0378-7753(03)00301-X
Ohara, 2004, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136, 303, 10.1016/j.jpowsour.2004.03.014
Takamura, 2004, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources, 129, 96, 10.1016/j.jpowsour.2003.11.014
Arie, 2013, Electrochemical properties of P-Doped silicon thin film anodes of lithium ion batteries, Mater. Sci. Forum, 737, 80, 10.4028/www.scientific.net/MSF.737.80
Baranchugov, 2007, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes, Electrochem. Commun., 9, 796, 10.1016/j.elecom.2006.11.014
Kim, 2014, Electrochemical properties of a full cell of lithium iron phosphate cathode using thin amorphous silicon anode, Solid State Ionics, 268, 256, 10.1016/j.ssi.2014.10.010
Lee, 2004, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries, J. Power Sources, 129, 270, 10.1016/j.jpowsour.2003.10.013
Deng, 2007, Effect of substrate surface conditions on electrochemical performance of Si thin film anode, ECS Trans., 2, 105, 10.1149/1.2424293
Uehara, 2005, Thick vacuum deposited silicon films suitable for the anode of Li-ion battery, J. Power Sources, 146, 441, 10.1016/j.jpowsour.2005.03.097
Zhang, 2008, The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity, Electrochim. Acta, 53, 5660, 10.1016/j.electacta.2008.03.017
Demirkan, 2015, Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 273, 52, 10.1016/j.jpowsour.2014.09.027
Wang, 2016, Facile synthesis of multilayer-like Si thin film as high-performance anode materials for lithium-ion batteries, Appl. Phys. A, 122, 528, 10.1007/s00339-016-0068-x
Cho, 2012, Patterned Si thin film electrodes for enhancing structural stability, Nanoscale Res. Lett., 7, 20, 10.1186/1556-276X-7-20
Cho, 2012, Improved electrochemical properties of patterned Si film electrodes, Microelectron. Eng., 89, 104, 10.1016/j.mee.2011.03.141
Xiao, 2011, Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries, J. Power Sources, 196, 1409, 10.1016/j.jpowsour.2010.08.058
Cho, 2017, Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries, Electrochim. Acta, 224, 649, 10.1016/j.electacta.2016.12.067
Jeong, 2017, Annealing effect on electrochemical properties of patterned Si film electrodes for thin-film batteries, Curr. Appl. Phys., 1
Yu, 2012, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater, 2, 68, 10.1002/aenm.201100634
Baggetto, 2011, Honeycomb-structured silicon: remarkable morphological changes induced by electrochemical (De)lithiation, Adv. Mater., 23, 1563, 10.1002/adma.201003665
Wang, 2018, Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries, Ionics, 24, 373, 10.1007/s11581-017-2219-2
Fujitani, 2003, New a-Si alloy thin film anode with self organized micro columnar structure, Electrochem. Soc., 1
Ge, 2012, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 12, 2318, 10.1021/nl300206e
Lin, 2015, Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity, RSC Adv., 5, 87090, 10.1039/C5RA13568K
Mukanova, 2018, N-type doped silicon thin film on a porous Cu current collector as the negative electrode for Li-Ion batteries, ChemistryOpen, 7, 92, 10.1002/open.201700162
Dogan, 2015, Electrodeposited copper foams as substrates for thin film silicon electrodes, Solid State Ionics, 288, 204, 10.1016/j.ssi.2016.02.001
Huang, 2016, Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries, Electrochim. Acta, 203, 213, 10.1016/j.electacta.2016.04.041
Chen, 2011, A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector, Adv. Funct. Mater., 21, 380, 10.1002/adfm.201001475
Song, 2007, A study on the effect of structure and P-doping of Si thin film as an anode for lithium rechargeable batteries, Adv. Nanomater. Process, 124–126, 1063
Ahn, 2006, Formation and characterization of Cu-Si nanocomposite electrodes for rechargeable Li batteries, J. Power Sources, 163, 211, 10.1016/j.jpowsour.2005.12.077
Polat, 2015, Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery, Thin Solid Films, 596, 190, 10.1016/j.tsf.2015.09.085
Hwang, 2009, Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries, J. Power Sources, 194, 1061, 10.1016/j.jpowsour.2009.05.047
Kim, 2003, Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries, Electrochem. Commun., 5, 544, 10.1016/S1388-2481(03)00120-6
Kim, 2005, Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries, Electrochim. Acta, 50, 3390, 10.1016/j.electacta.2004.12.021
Zhang, 2016, 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery, J. Alloy. Comp., 657, 559, 10.1016/j.jallcom.2015.10.123
Liu, 2015, The electrochemistry of amorphous Si-B thin film electrodes in Li cells, J. Electrochem. Soc., 163, A192, 10.1149/2.0451602jes
Li, 2012, Si-Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries, J. Power Sources, 217, 102, 10.1016/j.jpowsour.2012.05.080
Guo, 2014, Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries, J. Power Sources, 248, 1141, 10.1016/j.jpowsour.2013.09.138
Wen, 2013, Cu-doped silicon film as anode for lithium ion batteries prepared by ion-beam sputtering, Int. J. Electrochem. Sci., 8, 10129, 10.1016/S1452-3981(23)13099-9
Wang, 2012, Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries, J. Power Sources, 202, 236, 10.1016/j.jpowsour.2011.11.027
Sethuraman, 2011, Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries, J. Power Sources, 196, 393, 10.1016/j.jpowsour.2010.06.043
Hieu, 2014, Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer, J. Appl. Electrochem., 44, 353, 10.1007/s10800-013-0648-9
Datta, 2011, Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries, Electrochim. Acta, 56, 4717, 10.1016/j.electacta.2011.01.124
Garino, 2015, Mesoporous Si and multi-layered Si/C films by pulsed laser deposition as Li-Ion microbattery anodes, J. Electrochem. Soc., 162, A1816, 10.1149/2.0531509jes
Arie, 2009, Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries, Mater. Chem. Phys., 113, 249, 10.1016/j.matchemphys.2008.07.082
Biserni, 2015, Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method, J. Power Sources, 274, 252, 10.1016/j.jpowsour.2014.09.140
Wu, 2016, Silicon nitride coated silicon thin fi lm on three dimensions current collector for lithium ion battery anode, J. Power Sources, 325, 64, 10.1016/j.jpowsour.2016.06.025
Haro, 2017, Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-Ion batteries, Adv. Sci., 10.1002/advs.201700180
Tong, 2014, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries, J. Power Sources, 247, 78, 10.1016/j.jpowsour.2013.08.087
Xu, 2015, Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires, J. Power Sources, 281, 455, 10.1016/j.jpowsour.2015.02.023
Brumbarov, 2014, Silicon on conductive self-organized TiO2 nanotubes – a high capacity anode material for Li-ion batteries, J. Power Sources, 258, 129, 10.1016/j.jpowsour.2014.02.049
Lin, 2016, Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer, J. Power Sources, 336, 401, 10.1016/j.jpowsour.2016.11.012
Sun, 2014, Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries, J. Power Sources, 268, 610, 10.1016/j.jpowsour.2014.06.039
Toçoğlu, 2016, Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering, Appl. Surf. Sci., 389, 507, 10.1016/j.apsusc.2016.07.135
Mukanova, 2017, Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries, Electrochim. Acta, 258, 800, 10.1016/j.electacta.2017.11.129
Chiu, 2015, Silicon thin film anodes coated on micron carbon-fiber current collectors for lithium ion batteries, Surf. Coating. Technol., 267, 70, 10.1016/j.surfcoat.2014.10.059
Zhang, 2012, Silicon/graphene-sheet hybrid fi lm as anode for lithium ion batteries, Electrochem. Commun., 23, 17, 10.1016/j.elecom.2012.07.001
Radhakrishnan, 2013, Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries, Apl. Mater., 1, 62103, 10.1063/1.4834735
Sun, 2016, Binder-free graphene as advanced anode for lithium batteries Haiyan, J. Mater. Chem. A, 4, 6886, 10.1039/C5TA08553E
Sonia, 2017, Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study, J. Mater. Chem. A Mater. Energy Sustain., 5, 8662, 10.1039/C7TA01978E
Paronyan, 2017, Incommensurate graphene foam as a high capacity lithium intercalation anode, Sci. Rep., 7, 39944, 10.1038/srep39944
Sun, 2016, Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance, Electrochim. Acta, 191, 462, 10.1016/j.electacta.2016.01.096
Hu, 2014, Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries, J. Mater. Chem. A, 2, 9118, 10.1039/C4TA01013B
Custer, 1994, Density of amorphous Si, Appl. Phys. Lett., 64, 437, 10.1063/1.111121
Choi, 2017, Novel strategy to improve the Li-storage performance of micro silicon anodes, J. Power Sources, 348, 302, 10.1016/j.jpowsour.2017.03.020
Liang, 2016, A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries, ACS Nano, 10, 2295, 10.1021/acsnano.5b06995
Chan, 2009, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 189, 1132, 10.1016/j.jpowsour.2009.01.007
Choi, 2007, Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte, J. Power Sources, 172, 404, 10.1016/j.jpowsour.2007.07.058
Choi, 2006, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161, 1254, 10.1016/j.jpowsour.2006.05.049
Fridman, 2013, A new advanced lithium ion battery: combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn15O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution, Electrochem. Commun., 33, 31, 10.1016/j.elecom.2013.04.010
Chen, 2006, Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive, Electrochem. Solid State Lett., 9, A512, 10.1149/1.2338771
Kulova, 2008, Irreversible capacity of the amorphous silicon thin-film electrodes, Russ. J. Electrochem., 44, 525, 10.1134/S1023193508050042
Song, 2009, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochem. Solid State Lett., 12, A23, 10.1149/1.3028216
Ryu, 2008, Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives, J. Electrochem. Soc., 155, A583, 10.1149/1.2940310
Teng, 2015, In-situ analysis of gas generation in lithium ion batteries with different carbonate-based electrolytes, ACS Appl. Mater. Interfaces, 7, 22751, 10.1021/acsami.5b08399
Winter, 1998, Chloroethylene carbonate, a solvent for lithium-ion cells, evolving CO2 during reduction, J. Electrochem. Soc., 145, L27, 10.1149/1.1838270
Schiele, 2017, The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries, ACS Energy Lett., 2, 2228, 10.1021/acsenergylett.7b00619
Spahr, 2004, Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes, J. Electrochem. Soc., 151, A1383, 10.1149/1.1775224
Hancock, 2018, Electrolyte decomposition and electrode thickness changes in Li-S cells with lithium metal anodes, prelithiated silicon anodes and hard carbon anodes, J. Electrochem. Soc., 165, A6091, 10.1149/2.0161801jes
Takada, 2013, Progress and prospective of solid-state lithium batteries, Acta Mater., 61, 759, 10.1016/j.actamat.2012.10.034
Ohta, 2012, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 202, 332, 10.1016/j.jpowsour.2011.10.064
Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076
Whittingham, 2004, Lithium batteries and cathode materials, Chem. Rev., 104, 4271, 10.1021/cr020731c
Miyazaki, 2016, Anode properties of silicon-rich amorphous silicon suboxide fi lms in all-solid-state lithium batteries, J. Power Sources, 329, 41, 10.1016/j.jpowsour.2016.08.070
Oudenhoven, 2011, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts, Adv. Energy Mater., 1, 10, 10.1002/aenm.201000002
Baggetto, 2008, High energy density all-solid-state batteries: a challenging concept towards 3D integration, Adv. Funct. Mater., 18, 1057, 10.1002/adfm.200701245
Le Cras, 2015, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect, Adv. Energy Mater, 5, 1501061, 10.1002/aenm.201501061
Phan, 2012, High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater., 22, 2580, 10.1002/adfm.201200104
Gong, 2015, Surface/interface effects on high-performance thin-film all-solid-state Li-Ion batteries, ACS Appl. Mater. Interfaces, 7, 26007, 10.1021/acsami.5b07058
Talin, 2016, Fabrication, testing, and simulation of all-solid-state three-dimensional Li-Ion batteries, ACS Appl. Mater. Interfaces, 8, 32385, 10.1021/acsami.6b12244
Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066
Tan, 2012, Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery, ECS Solid State Lett., 1, Q57, 10.1149/2.013206ssl
Chen, 2014, Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries, J. Mater. Chem. A, 2, 13277, 10.1039/C4TA02289K
Choi, 2002, Radio-frequency magnetron sputtering power effect on the ionic conductivities of lipon films, Electrochem. Solid State Lett., 5, A14, 10.1149/1.1420926
Lobe, 2016, Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries, J. Power Sources, 307, 684, 10.1016/j.jpowsour.2015.12.054
Jee, 2010, Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries, Solid State Ionics, 181, 902, 10.1016/j.ssi.2010.04.017
Hamon, 2006, Influence of sputtering conditions on ionic conductivity of LiPON thin films, Solid State Ionics, 177, 257, 10.1016/j.ssi.2005.10.021
Torres, 2014, In situ generation of mesostructured Cu2S/C composite cathode via electrochemical reaction for enhanced lithium storage and insights into the mechanism, ChemElectroChem, 1, 375
Kim, 2013, Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte, Dalt. Trans., 42, 13112, 10.1039/c3dt51795k
Swann, 1988, Magnetron sputtering, Phys. Technol., 19, 67, 10.1088/0305-4624/19/2/304
2016
Bäuerle, 1999, Pulsed laser deposition, Appl. Phys. A Mater. Sci. Process, 69, S45, 10.1007/s003399900178
Schwarzacher, 2006, Electrodeposition: a technology for the future, Electrochem. Soc. Interface, 15, 32, 10.1149/2.F08061IF
Epur, 2012, Electrodeposition of amorphous silicon anode for lithium ion batteries, Mater. Sci. Eng. B, 177, 1157, 10.1016/j.mseb.2012.04.027
Gattu, 2017, Pulsed current electrodeposition of silicon thin films anodes for lithiums ion battery applications, Inorg. Artic., 5, 1
Vlaic, 2015, Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid, Electrochim. Acta, 168, 403, 10.1016/j.electacta.2015.03.216
Mukanova, 2017, CVD graphene growth on a surface of liquida gallium, Mater. Today Proc., 4, 4548, 10.1016/j.matpr.2017.04.028
Colston, 2016, Mapping the strain state of 3C-SiC/Si (001) suspended structures using, Mater. Sci. Forum, 858, 274, 10.4028/www.scientific.net/MSF.858.274
Ferraresi, 2016, Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-Ion batteries, ACS Appl. Mater. Interfaces, 8, 29791, 10.1021/acsami.6b10929
Pereira-Nabais, 2013, Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Appl. Surf. Sci., 266, 5, 10.1016/j.apsusc.2012.10.165
Vovk, 2009, Electrochemical characteristics of amophous carbon coated silicon electrodes, Korean J. Chem. Eng., 26, 1034, 10.1007/s11814-009-0172-0