Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes
Tài liệu tham khảo
Needell, 2016, Potential for widespread electrification of personal vehicle travel in the United States, Nat. Energy, 1, 10.1038/nenergy.2016.112
Howell, 2017
Du, 2017, Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries, J. Appl. Electrochem., 47, 405, 10.1007/s10800-017-1047-4
Gallagher, 2016, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes
Ahmed, 2017, Enabling fast charging – a battery technology gap assessment, J. Power Sources, 367, 250, 10.1016/j.jpowsour.2017.06.055
Li, 2014, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, J. Power Sources, 254, 168, 10.1016/j.jpowsour.2013.12.099
Broussely, 2005, Main aging mechanisms in Li ion batteries, J. Power Sources, 90, 10.1016/j.jpowsour.2005.03.172
Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355
Chang, 2015, Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI, J. Am. Chem. Soc., 137, 15209, 10.1021/jacs.5b09385
Cheng, 2017, Visualization of lithium plating and stripping via in operando transmission X-ray microscopy, J. Phys. Chem. C, 121, 7761, 10.1021/acs.jpcc.7b01414
Orsini, 1998, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, J. Power Sources, 76, 19, 10.1016/S0378-7753(98)00128-1
Li, 2010, Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents, J. Electrochem. Soc., 158, A74, 10.1149/1.3514705
Han, 2011, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties, J. Power Sources, 196, 3623, 10.1016/j.jpowsour.2010.12.040
Yamada, 2013, A superconcentrated ether electrolyte for fast-charging Li-ion batteries, Chem. Commun., 49, 11194, 10.1039/c3cc46665e
Kang, 2018, Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries, Electrochim. Acta, 259, 949, 10.1016/j.electacta.2017.11.018
Trask, 2015, Performance of full cells containing carbonate-based LiFSI electrolytes and silicon-graphite negative electrodes, J. Electrochem. Soc., 163, A345, 10.1149/2.0981602jes
Wood, 2017, Manufacturing R & D for low-cost, batteries for transportation applications
Zhao, 2008, Determination of lithium-ion transference numbers in LiPF–PC solutions based on electrochemical, J. Electrochem. Soc., 155, A292, 10.1149/1.2837832
Zugmann, 2011, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study, Electrochim. Acta, 56, 3926, 10.1016/j.electacta.2011.02.025
Periyapperuma, 2014, Conflat two and three electrode electrochemical cells, J. Electrochem. Soc., 161, 10.1149/2.0721414jes
Ding, 2001, Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF[sub 6] in ethylene carbonate-ethyl methyl carbonate, J. Electrochem. Soc., 148, A1196, 10.1149/1.1403730
Han, 2011, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties, J. Power Sources, 10.1016/j.jpowsour.2010.12.040
Evans, 1987, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer (Guildf), 28, 2324, 10.1016/0032-3861(87)90394-6
P. Nelson, K. Gallagher, I. Bloom, D. Dees, S. Ahmed, BatPaC (battery performance and cost) software, Argonne Natl. Lab. [Online]. Available http://www.cse.anl.gov/BatPaC/. (n.d.).