Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes

Electrochemistry Communications - Tập 103 - Trang 109-113 - 2019
Zhijia Du1, David L. Wood1, Ilias Belharouak1
1Energy and Transportation Science Division, Oak Ridge National Laboratory, One Bethel Valley Rd, Oak Ridge, TN 37830, United States of America

Tài liệu tham khảo

Needell, 2016, Potential for widespread electrification of personal vehicle travel in the United States, Nat. Energy, 1, 10.1038/nenergy.2016.112 Howell, 2017 Du, 2017, Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries, J. Appl. Electrochem., 47, 405, 10.1007/s10800-017-1047-4 Gallagher, 2016, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes Ahmed, 2017, Enabling fast charging – a battery technology gap assessment, J. Power Sources, 367, 250, 10.1016/j.jpowsour.2017.06.055 Li, 2014, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, J. Power Sources, 254, 168, 10.1016/j.jpowsour.2013.12.099 Broussely, 2005, Main aging mechanisms in Li ion batteries, J. Power Sources, 90, 10.1016/j.jpowsour.2005.03.172 Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355 Chang, 2015, Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI, J. Am. Chem. Soc., 137, 15209, 10.1021/jacs.5b09385 Cheng, 2017, Visualization of lithium plating and stripping via in operando transmission X-ray microscopy, J. Phys. Chem. C, 121, 7761, 10.1021/acs.jpcc.7b01414 Orsini, 1998, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, J. Power Sources, 76, 19, 10.1016/S0378-7753(98)00128-1 Li, 2010, Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents, J. Electrochem. Soc., 158, A74, 10.1149/1.3514705 Han, 2011, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties, J. Power Sources, 196, 3623, 10.1016/j.jpowsour.2010.12.040 Yamada, 2013, A superconcentrated ether electrolyte for fast-charging Li-ion batteries, Chem. Commun., 49, 11194, 10.1039/c3cc46665e Kang, 2018, Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries, Electrochim. Acta, 259, 949, 10.1016/j.electacta.2017.11.018 Trask, 2015, Performance of full cells containing carbonate-based LiFSI electrolytes and silicon-graphite negative electrodes, J. Electrochem. Soc., 163, A345, 10.1149/2.0981602jes Wood, 2017, Manufacturing R & D for low-cost, batteries for transportation applications Zhao, 2008, Determination of lithium-ion transference numbers in LiPF–PC solutions based on electrochemical, J. Electrochem. Soc., 155, A292, 10.1149/1.2837832 Zugmann, 2011, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study, Electrochim. Acta, 56, 3926, 10.1016/j.electacta.2011.02.025 Periyapperuma, 2014, Conflat two and three electrode electrochemical cells, J. Electrochem. Soc., 161, 10.1149/2.0721414jes Ding, 2001, Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF[sub 6] in ethylene carbonate-ethyl methyl carbonate, J. Electrochem. Soc., 148, A1196, 10.1149/1.1403730 Han, 2011, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties, J. Power Sources, 10.1016/j.jpowsour.2010.12.040 Evans, 1987, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer (Guildf), 28, 2324, 10.1016/0032-3861(87)90394-6 P. Nelson, K. Gallagher, I. Bloom, D. Dees, S. Ahmed, BatPaC (battery performance and cost) software, Argonne Natl. Lab. [Online]. Available http://www.cse.anl.gov/BatPaC/. (n.d.).