Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries
Tài liệu tham khảo
Su, 2014, Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater., 4, 1, 10.1002/aenm.201300882
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Choi, 2012, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, 9994, 10.1002/anie.201201429
Cheng, 2007, Template-directed materials for rechargeable lithium-ion batteries, J. Chem. Mater., 20, 667, 10.1021/cm702091q
Fong, 1990, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 137, 2009, 10.1149/1.2086855
Flandrois, 1999, Carbon materials for lithium-ion rechargeable batteries, Carbon, 37, 165, 10.1016/S0008-6223(98)00290-5
Landi, 2009, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638, 10.1039/b904116h
Huang, 2012, Graphene-based electrodes, Adv. Mater., 24, 5979, 10.1002/adma.201201587
Di Lupo, 2014, Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes, Acta Mater., 69, 60, 10.1016/j.actamat.2014.01.057
Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020
Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano. Today, 7, 414, 10.1016/j.nantod.2012.08.004
Park, 2010, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115, 10.1039/b919877f
Hu, 2012, Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries, Acta Mater., 60, 4695, 10.1016/j.actamat.2012.05.015
Xu, 2014, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries, J. Mater. Chem. A, 2, 9751, 10.1039/C4TA01691B
Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045
Jiang, 2012, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage, Adv Mater., 24, 5166, 10.1002/adma.201202146
Liu, 2015, Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice, Acta Mater., 82, 212, 10.1016/j.actamat.2014.08.053
Wang, 2011, Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life, J. Am. Chem. Soc., 133, 20692, 10.1021/ja208880f
Obrovac, 2007, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154, A103, 10.1149/1.2402112
Kim, 1999, The insertion mechanism of lithium into Mg2Si anode material for li-ion batteries, J. Electrochem. Soc., 146, 4401, 10.1149/1.1392650
Roberts, 2004, Mechanism of lithium insertion into magnesium silicide, J. Electrochem. Soc., 151, A493, 10.1149/1.1649753
Moriga, 2000, Reaction mechanism of metal silicide Mg2Si for Li insertion, J. Solid State Chem., 153, 386, 10.1006/jssc.2000.8787
Roberts, 2002, Magnesium silicide as a negative electrode material for lithium-ion batteries, J. Power Sources, 110, 424, 10.1016/S0378-7753(02)00207-0
Yan, 2008, The study of Mg2Si/carbon composites as anode materials for lithium ion batteries, J. Power Sources, 175, 547, 10.1016/j.jpowsour.2007.06.074
Xiao, 2014, Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries, J. Alloys Compd., 587, 807, 10.1016/j.jallcom.2013.10.115
Liu, 2012, Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction, Electrochem. Commun., 25, 15, 10.1016/j.elecom.2012.09.010
Ma, 2014, Mg2Si anode for Li-ion batteries: linking structural change to fast capacity fading, Appl. Phys. Lett., 105, 213901, 10.1063/1.4902510
Ma, 2012, Chemical preinsertion of lithium: an approach to improve the intrinsic capacity retention of bulk Si anodes for Li-ion batteries, J. Phys. Chem. Lett., 3, 3555, 10.1021/jz301762x
Boo, 2008, Molecular structures and energies of low-lying LixSix (x=1–4) clusters: comparison with LixCx (x=1, 2, 4) clusters, Chem. Phys. Lett., 453, 150, 10.1016/j.cplett.2008.01.063
Ma, 2014, A facile method for determining a suitable voltage window for an amorphous Li12Si7 anode, Electrochim. Acta, 129, 373, 10.1016/j.electacta.2014.02.142
Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1
Liu, 2014, Synthesis, structure transformation, and electrochemical properties of Li2MgSi, Adv. Funct. Mater., 24, 3944, 10.1002/adfm.201304287