Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries

Acta Materialia - Tập 98 - Trang 128-134 - 2015
Ruijun Ma1, Yongfeng Liu1,2, Yaxiong Yang1, Kaichao Pu1, Mingxia Gao1, Hongge Pan1
1State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China

Tài liệu tham khảo

Su, 2014, Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater., 4, 1, 10.1002/aenm.201300882 Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Choi, 2012, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, 9994, 10.1002/anie.201201429 Cheng, 2007, Template-directed materials for rechargeable lithium-ion batteries, J. Chem. Mater., 20, 667, 10.1021/cm702091q Fong, 1990, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 137, 2009, 10.1149/1.2086855 Flandrois, 1999, Carbon materials for lithium-ion rechargeable batteries, Carbon, 37, 165, 10.1016/S0008-6223(98)00290-5 Landi, 2009, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638, 10.1039/b904116h Huang, 2012, Graphene-based electrodes, Adv. Mater., 24, 5979, 10.1002/adma.201201587 Di Lupo, 2014, Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes, Acta Mater., 69, 60, 10.1016/j.actamat.2014.01.057 Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020 Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano. Today, 7, 414, 10.1016/j.nantod.2012.08.004 Park, 2010, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115, 10.1039/b919877f Hu, 2012, Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries, Acta Mater., 60, 4695, 10.1016/j.actamat.2012.05.015 Xu, 2014, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries, J. Mater. Chem. A, 2, 9751, 10.1039/C4TA01691B Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045 Jiang, 2012, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage, Adv Mater., 24, 5166, 10.1002/adma.201202146 Liu, 2015, Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice, Acta Mater., 82, 212, 10.1016/j.actamat.2014.08.053 Wang, 2011, Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life, J. Am. Chem. Soc., 133, 20692, 10.1021/ja208880f Obrovac, 2007, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154, A103, 10.1149/1.2402112 Kim, 1999, The insertion mechanism of lithium into Mg2Si anode material for li-ion batteries, J. Electrochem. Soc., 146, 4401, 10.1149/1.1392650 Roberts, 2004, Mechanism of lithium insertion into magnesium silicide, J. Electrochem. Soc., 151, A493, 10.1149/1.1649753 Moriga, 2000, Reaction mechanism of metal silicide Mg2Si for Li insertion, J. Solid State Chem., 153, 386, 10.1006/jssc.2000.8787 Roberts, 2002, Magnesium silicide as a negative electrode material for lithium-ion batteries, J. Power Sources, 110, 424, 10.1016/S0378-7753(02)00207-0 Yan, 2008, The study of Mg2Si/carbon composites as anode materials for lithium ion batteries, J. Power Sources, 175, 547, 10.1016/j.jpowsour.2007.06.074 Xiao, 2014, Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries, J. Alloys Compd., 587, 807, 10.1016/j.jallcom.2013.10.115 Liu, 2012, Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction, Electrochem. Commun., 25, 15, 10.1016/j.elecom.2012.09.010 Ma, 2014, Mg2Si anode for Li-ion batteries: linking structural change to fast capacity fading, Appl. Phys. Lett., 105, 213901, 10.1063/1.4902510 Ma, 2012, Chemical preinsertion of lithium: an approach to improve the intrinsic capacity retention of bulk Si anodes for Li-ion batteries, J. Phys. Chem. Lett., 3, 3555, 10.1021/jz301762x Boo, 2008, Molecular structures and energies of low-lying LixSix (x=1–4) clusters: comparison with LixCx (x=1, 2, 4) clusters, Chem. Phys. Lett., 453, 150, 10.1016/j.cplett.2008.01.063 Ma, 2014, A facile method for determining a suitable voltage window for an amorphous Li12Si7 anode, Electrochim. Acta, 129, 373, 10.1016/j.electacta.2014.02.142 Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1 Liu, 2014, Synthesis, structure transformation, and electrochemical properties of Li2MgSi, Adv. Funct. Mater., 24, 3944, 10.1002/adfm.201304287