Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery
Tóm tắt
Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation—also required for high energy density batteries—by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.
Tài liệu tham khảo
U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64
Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344
Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958
Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91
Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27
Winn D A, Steele B C H. Thermodynamic characterisation of nonstoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557
Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09
Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964
Armand M B. Chapter–Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161
Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174
Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88
Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212
Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221
Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013
Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051
Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719
Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Liion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162 (2): A3084–A3097
Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548
Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281
Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium-and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289
Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472
Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150
Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22
Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439
Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. Insitu FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271
Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30
McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26
Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417
Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618
Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394
Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988
Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961
Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472
Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213
Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179
Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352
Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390
Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97
Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79
Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrodeelectrolyte solution interactions, related to cathode materials for Liion batteries. Journal of Power Sources, 2007, 165(2): 491–499
Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135
Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682
Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013
Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406
Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978
Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65
Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128
Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076
Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810
Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188
Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223
Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178
Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464
Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351
Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120
Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227
Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018
Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350
Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250
Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273
Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978
Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137
Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431
Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312
Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for highvoltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781
Im J, Lee J, Ryou MH, Lee Y M, Cho K Y. Fluorinated carbonatebased electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385
Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32
Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Chem-SusChem, 2014, 7(10): 2939–2946
Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131
Sun X, Angell C A. Doped sulfone electrolytes for high voltage Liion cell applications. Electrochemistry Communications, 2009, 11 (7): 1418–1421
Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926
Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920
Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4 (22): 3992–3999
Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462
Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102
Hochgatterer N S, SchweigerMR, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80
Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220
Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16
Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06
Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077
Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331
Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity roomtemperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833
Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895
Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEIreinforcing additives. Electrochimica Acta, 2013, 102: 133–141
Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Liion batteries. Electrochimica Acta, 2015, 2015(154): 287–293
Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02537
Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82
Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696
Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911
Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31
Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428
Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006
Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014
Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72
Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934
Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrilebased electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20
Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774
Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046
Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85 (9): 559–565
Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032
Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609
Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117
Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970
Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86
Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389
Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273
Watanabe M, ThomasML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239
Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609
Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566
Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101
Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidiniumbased ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958
Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099
Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662
Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924
Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107
Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773
Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031
Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806
Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94
Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium-and sodium-ion anodes. Electrochimica Acta, 2014, 128 (10): 163–171
Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334 (6052): 75–79
Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Sigraphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389
Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266
Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22
Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithiumion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791
Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137
Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250
Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614
Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29 (10): 4181–4189
Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492
Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858
Kang I S, Lee Y S, Kim DW. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57
Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132
Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922