Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries
Tài liệu tham khảo
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Yoshino, 2012, The birth of the lithium-ion battery, Angew. Chem. Int. Ed., 51, 5798, 10.1002/anie.201105006
Etacheri, 2011, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w
Aurbach, 2004, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochim. Acta, 50, 247, 10.1016/j.electacta.2004.01.090
Goodenough, 2009, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z
Tu, 2015, A dendrite-free lithium metal battery model based on nanoporous polymer/ceramic composite electrolytes and high-energy electrodes, Small, 11, 2631, 10.1002/smll.201403568
Tu, 2014, Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries, Adv. Energy Mater., 4, 10.1002/aenm.201300654
Cheng, 2015, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci., 3
Tu, 2015, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries, Acc. Chem. Res., 48, 2947, 10.1021/acs.accounts.5b00427
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Aurbach, 2016, Advances in understanding mechanisms underpinning lithium-air batteries, Nat. Energy, 1, 16128, 10.1038/nenergy.2016.128
Pang, 2016, Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132
Li, 2014, Recent advances in zinc-air batteries, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C
Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355
Rosso, 2001, Onset of dendritic growth in lithium/polymer cells, J. Power Sources, 97, 804, 10.1016/S0378-7753(01)00734-0
Lu, 2015, Stable cycling of lithium metal batteries using high transference number electrolytes, Adv. Energy Mater., 5, 10.1002/aenm.201402073
Bouchet, 2013, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nat. Mater., 12, 452, 10.1038/nmat3602
Srivastava, 2014, 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage, Adv. Mater., 26, 201, 10.1002/adma.201303070
Khurana, 2014, Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries, J. Am. Chem. Soc., 136, 7395, 10.1021/ja502133j
Tung, 2015, A dendrite-suppressing composite ion conductor from aramid nanofibres, Nat. Commun., 6, 10.1038/ncomms7152
Ding, 2013, dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y
Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041
Zhang, 2017, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries, Adv. Funct. Mater., 27
Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6
Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32
Liang, 2016, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. USA, 113, 2862, 10.1073/pnas.1518188113
Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Tikekar, 2016, Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions, Sci. Adv., 2, e1600320, 10.1126/sciadv.1600320
Liang, 2004, FT-IR study of the microstructure of Nafion® membrane, J. Membr. Sci., 233, 39, 10.1016/j.memsci.2003.12.008
Tu, 2017, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes, Adv. Energy Mater., 1602367, 10.1002/aenm.201602367
Zhao, 2008, Determination of lithium-ion transference numbers in LiPF6-PC solutions based on electrochemical polarization and NMR measurements, J. Electrochem. Soc., 155, A292, 10.1149/1.2837832
Zugmann, 2011, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study, Electrochim. Acta, 56, 3926, 10.1016/j.electacta.2011.02.025
Cai, 2012, High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes, Energy Environ. Sci., 5, 5690, 10.1039/C1EE02708E
Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076
Lu, 2015, Stable lithium electrodeposition in salt-reinforced electrolytes, J. Power Sources, 279, 413, 10.1016/j.jpowsour.2015.01.030