Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes
Tài liệu tham khảo
Liu, 2015, Angew. Chem., 127, 9768, 10.1002/ange.201503150
Scrosati, 2011, Energy Environ. Sci., 4, 3287, 10.1039/c1ee01388b
Gu, 2015, Nano Energy, 17, 366, 10.1016/j.nanoen.2015.08.025
Oh, 2010, Adv. Mater., 22, 4842, 10.1002/adma.200904027
Li, 2006, Electrochim. Acta, 51, 3872, 10.1016/j.electacta.2005.11.015
Xiao, 2015, Adv. Funct. Mater., 25, 1426, 10.1002/adfm.201403629
Saint, 2007, Adv. Funct. Mater., 17, 1765, 10.1002/adfm.200600937
Sim, 2013, Adv. Mater., 25, 4498, 10.1002/adma.201301454
Son, 2015, Nat. Commun., 6, 7393, 10.1038/ncomms8393
Zhou, 2015, Nano Lett., 15, 6222, 10.1021/acs.nanolett.5b02697
Xia, 2015, Nano Lett., 15, 6658, 10.1021/acs.nanolett.5b02482
Martin, 2011, Adv. Funct. Mater., 21, 3524, 10.1002/adfm.201002100
Wang, 2012, Nano Lett., 12, 1624, 10.1021/nl204559u
Luo, 2015, Nano Lett., 15, 7016, 10.1021/acs.nanolett.5b03047
Ng, 2006, Angew. Chem. Int. Ed., 45, 6896, 10.1002/anie.200601676
Hu, 2008, Angew. Chem. Int. Ed., 47, 1645, 10.1002/anie.200704287
Pan, 2014, Chem. Commun., 50, 5878, 10.1039/C4CC01728E
Zhang, 2016, Adv. Funct. Mater., 26, 440, 10.1002/adfm.201503777
Xu, 2010, J. Mater. Chem., 20, 3216, 10.1039/b921979j
Gao, 2009, Phys. Chem. Chem. Phys., 11, 11101, 10.1039/b914959g
Guo, 2011, Electrochim. Acta, 56, 3981, 10.1016/j.electacta.2011.02.014
Lu, 2015, ACS Nano, 9, 2540, 10.1021/nn505410q
Szczech, 2011, Energy Environ. Sci., 4, 56, 10.1039/C0EE00281J
Teki, 2009, Small, 5, 2236, 10.1002/smll.200900382
Wang, 2013, ACS Nano, 7, 1437, 10.1021/nn3052023
Ren, 2016, J. Mater. Chem. A, 4, 552, 10.1039/C5TA07487H
He, 2011, Adv. Mater., 23, 4938, 10.1002/adma.201102568
Wu, 2013, Nat. Commun., 4, 1943, 10.1038/ncomms2941
Chen, 2015, Adv. Funct. Mater., 25, 6701, 10.1002/adfm.201503206
Gohier, 2012, Adv. Mater., 24, 2592, 10.1002/adma.201104923
Yin, 2011, J. Phys. Chem. C, 115, 14148, 10.1021/jp204653y
Dimov, 2003, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6
Wen, 2003, Electrochem. Commun., 5, 165, 10.1016/S1388-2481(03)00009-2
Zhang, 2004, J. Power Sources, 125, 206, 10.1016/j.jpowsour.2003.07.019
Ng, 2007, J. Phys. Chem. C, 111, 11131, 10.1021/jp072778d
Zhang, 2014, Adv. Mater., 26, 6749, 10.1002/adma.201402813
Zhang, 2014, Angew. Chem. Int. Ed., 53, 5165, 10.1002/anie.201310412
Chen, 2015, ACS Appl. Mater. Interfaces, 7, 21391, 10.1021/acsami.5b06144
Kim, 2015, J. Power Sources, 279, 13, 10.1016/j.jpowsour.2014.12.041
Sun, 2015, J. Electrochem. Soc., 162, A1530, 10.1149/2.0611508jes
Yang, 2015, Sci. Rep., 5, 10908, 10.1038/srep10908
Liu, 2014, Nat. Nanotechnol., 9, 187, 10.1038/nnano.2014.6
Yang, 2015, Nano Energy, 18, 133, 10.1016/j.nanoen.2015.09.016
Chen, 2012, Phys. Chem. Chem. Phys., 14, 12741, 10.1039/c2cp42231j
Liu, 2012, Nano Lett., 12, 3315, 10.1021/nl3014814
Kong, 2013, Nanoscale, 5, 2967, 10.1039/c3nr34024d
Wang, 2013, Adv. Mater., 25, 3560, 10.1002/adma.201300844
Zhou, 2013, Electrochim. Acta, 87, 663, 10.1016/j.electacta.2012.10.008
Tao, 2014, Nanoscale, 6, 3138, 10.1039/C3NR03090C
Liu, 2016, Nanoscale, 8, 701, 10.1039/C5NR06278K
Zhou, 2013, Small, 9, 2684, 10.1002/smll.201202071
Liu, 2011, Angew. Chem. Int. Ed., 50, 5947, 10.1002/anie.201102011
Guan, 2013, Nanoscale, 5, 2469, 10.1039/c3nr34041d
Hwang, 2014, Nano Energy, 10, 53, 10.1016/j.nanoen.2014.08.020
Nara, 2008, Chem. Lett., 37, 142, 10.1246/cl.2008.142
Pramanik, 2015, Chem. Mater., 27, 1082, 10.1021/cm5044045
Liu, 2015, ACS Nano, 9, 1985, 10.1021/nn507003z
Wu, 2012, Nano Lett., 12, 904, 10.1021/nl203967r
Choi, 2014, Nano Lett., 14, 7120, 10.1021/nl503620z