Facilely tunable core-shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode
Tài liệu tham khảo
Casimir, 2016, Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation, Nanomater. Energy, 27, 359, 10.1016/j.nanoen.2016.07.023
Hwang, 2012, Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett., 12, 802, 10.1021/nl203817r
Fan, 2020, Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions, Electrochim. Acta, 332, 135507, 10.1016/j.electacta.2019.135507
Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004
Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5, 10908, 10.1038/srep10908
Ryu, 2017, Practical considerations of Si-based anodes for lithium-ion battery applications, Nano Research, 10, 3970, 10.1007/s12274-017-1692-2
Hwang, 2012, Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett., 12, 802, 10.1021/nl203817r
Zhang, 2012, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 12, 2778, 10.1021/nl204551m
Cui, 2010, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano, 4, 3671, 10.1021/nn100619m
Zhao, 2019, Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control, ACS Nano, 13, 10908, 10.1021/acsnano.9b00670
Cen, 2019, Synthesis of Si anode with a microsized-branched structure from recovered Al scrap for use in Li-Ion batteries, J. Power Sources, 410, 31, 10.1016/j.jpowsour.2018.10.097
Chang, 2018, Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries, Nat. Commun., 9, 1, 10.1038/s41467-018-05986-9
Chang, 2015, Multiscale analysis of prelithiated silicon nanowire for Li-ion battery, Comput. Mater. Sci., 98, 99, 10.1016/j.commatsci.2014.11.001
Hu, 2011, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 367, 10.1039/C0CC02078H
An, 2019, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nat. Commun., 10, 1447, 10.1038/s41467-019-09510-5
Sun, 2019, Porous Si/C anode materials by Al-Si dealloying method with PEA surfactant assisted cross-linked carbon coating for lithium-ion battery applications, Electrochim. Acta, 327, 134995, 10.1016/j.electacta.2019.134995
Zhao, 2019, Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control, ACS Nano, 13, 5602, 10.1021/acsnano.9b00670
Liu, 2013, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries, Sci. Rep., 3, 1622, 10.1038/srep01622
Yang, 2017, Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage, Adv. Mater., 29, 1700523, 10.1002/adma.201700523
Fang, 2019, Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes, Electrochim. Acta, 317, 575, 10.1016/j.electacta.2019.06.028
Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5, 10908, 10.1038/srep10908
Jiao, 2018, Controlled scalable synthesis of yolk-shell structured large-size industrial silicon with interconnected carbon network for lithium storage, Electrochim. Acta, 283, 1702, 10.1016/j.electacta.2018.07.143
Niu, 2015, Direct amination of Si nanoparticles for the preparation of Si@ ultrathin SiO x@ graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem., 3, 19892, 10.1039/C5TA05386B
Zhang, 2014, Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies, Nano Lett., 14, 7161, 10.1021/nl503776u
Sim, 2013, Critical thickness of SiO2 coating layer on core@ shell bulk@ nanowire Si anode materials for Li-ion batteries, Adv. Mater., 25, 4498, 10.1002/adma.201301454
McDowell, 2011, Novel size and surface oxide effects in silicon nanowires as lithium battery anodes, Nano Lett., 11, 4018, 10.1021/nl202630n
Fan, 2018, A fluoride ion-mediated continuous etching–redeposition strategy to synthesize Si nanocomposites with appropriate SiO2 coating layers for Li-ion batteries, Chem. Commun., 54, 12447, 10.1039/C8CC05034A
Zheng, 2018, Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries, Advanced Energy Materials, 8, 1801718, 10.1002/aenm.201801718
Xu, 2011, Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem., 21, 9849, 10.1039/c0jm04309e
Delpuech, 2014, Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies, J. Phys. Chem. C, 118, 17318, 10.1021/jp503949y
Koo, 2012, A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries, Angew. Chem. Int. Ed., 51, 8762, 10.1002/anie.201201568
Maver, 2011, An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes, J. Mater. Chem., 21, 4071, 10.1039/c0jm04481d
Mazouzi, 2009, Silicon composite electrode with high capacity and long cycle life, Electrochem. Solid State Lett., 12, A215, 10.1149/1.3212894
Legrand, 1990, Hydroxyls of silica powders, Adv. Colloid Interface Sci., 33, 91, 10.1016/0001-8686(90)80027-W
Song, 2009, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochem. Solid State Lett., 12, A23, 10.1149/1.3028216
Warring, 2016, Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy, Langmuir, 32, 1568, 10.1021/acs.langmuir.5b04506
Arigane, 1999, In situ FT-IR and photoluminescence study of porous silicon during exposure to F2, H2O, and D2O, Surf. Sci., 427, 304, 10.1016/S0039-6028(99)00294-0
Struck, 1997, Vibrational study of silicon oxidation: H2O on Si(100), Surf. Sci., 380, 444, 10.1016/S0039-6028(97)00041-1
Wise, 1996, Reaction kinetics of H2O with chlorinated Si(111)-(7 × 7) and porous silicon surfaces, Surf. Sci., 364, 367, 10.1016/0039-6028(96)00595-X
McGonigal, 1990, Infrared reflection absorption Spectroscopy study of the chemisorption of small molecules (H2, O2 and H2O) on silicon, J. Electron. Spectrosc. Relat. Phenom., 54, 1033, 10.1016/0368-2048(90)80293-J
Gräf, 1989, Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces, J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films, 7, 808, 10.1116/1.575845
Oellig, 1984, The state of chemisorption of H2O on silicon surfaces at room temperature, Solid State Commun., 51, 7, 10.1016/0038-1098(84)90759-2
Ibach, 1982, Dissociative chemisorption of H2O on Si(100) and Si(111) - a vibrational study, Solid State Commun., 42, 457, 10.1016/0038-1098(82)90972-3
Niu, 2015, Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem., 3, 19892, 10.1039/C5TA05386B
Bahruji, 2009, Photoactivated reaction of water with silicon nanoparticles, Int. J. Hydrogen Energy, 34, 8504, 10.1016/j.ijhydene.2009.08.039
Innocenzi, 2003, Order−Disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy, J. Phys. Chem. B, 107, 4711, 10.1021/jp026609z
Hayakawa, 2000, AM1 study on infra-red spectra of silica clusters modified by fluorine, J. Non-Cryst. Solids, 262, 264, 10.1016/S0022-3093(99)00664-X
Warring, 2016, Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy, Langmuir, 32, 1568, 10.1021/acs.langmuir.5b04506
Takamura, 1964, Infrared characteristic bands of highly dispersed silica, Kolloid-Z. Z. Polym., 195, 12, 10.1007/BF01500878
Yogi, 2018, Quantifying the short-range order in amorphous silicon by Raman scattering, Anal. Chem., 90, 8123, 10.1021/acs.analchem.8b01352
Sun, 2019, Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage, Carbon, 155, 601, 10.1016/j.carbon.2019.08.059
Gupta, 2009, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals, Solid State Commun., 149, 1989, 10.1016/j.ssc.2009.08.036
Mishra, 2002, Raman, photoluminescence and optical absorption studies on nanocrystalline silicon, Mater. Sci. Eng., B, 95, 202, 10.1016/S0921-5107(02)00234-9
Wang, 2000, Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects, Phys. Rev. B, 61, 16827, 10.1103/PhysRevB.61.16827
Li, 2020, Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries, Electrochim. Acta, 331, 135331, 10.1016/j.electacta.2019.135331
Miller, 1985, X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces, Anal. Chem., 57, 2314, 10.1021/ac00289a033
Kobayashi, 1994, Direct spectroscopic evidence of bias-induced shifts of semiconductor band edges for metal-insulator-semiconductor diodes, Jpn. J. Appl. Phys., 33, L754, 10.1143/JJAP.33.L754
Hollinger, 1984, Probing the transition layer at the SiO2-Si interface using core level photoemission, Appl. Phys. Lett., 44, 93, 10.1063/1.94565
Nguyen, 1989, XPS study of SiO thin films and SiO-metal interfaces, J. Phys. Condens. Matter, 1, 5197, 10.1088/0953-8984/1/31/019
Miyachi, 2005, Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc., 152, A2089, 10.1149/1.2013210
Bridel, 2010, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chem. Mater., 22, 1229, 10.1021/cm902688w
Mukherjee, 2012, Nanostructured electrodes for high-power lithium ion batteries, Nanomater. Energy, 1, 518, 10.1016/j.nanoen.2012.04.001
Sun, 2015, Two-dimensional tin disulfide nanosheets for enhanced sodium storage, ACS Nano, 9, 11371, 10.1021/acsnano.5b05229
Sun, 2016, A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling, Electrochim. Acta, 187, 1, 10.1016/j.electacta.2015.11.020
Hu, 2014, Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries, J. Mater. Chem., 2, 9118, 10.1039/C4TA01013B
Sun, 2016, Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries, J. Power Sources, 318, 113, 10.1016/j.jpowsour.2016.04.016