Facilely tunable core-shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode

Electrochimica Acta - Tập 342 - Trang 136068 - 2020
Jianguang Guo1, Wei Zhai1, Qing Sun1, Qing Ai2, Jing Li1, Jun Cheng1, Linna Dai1, Lijie Ci1
1Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
2Department of Materials Science and NanoEngineering, Rice University, USA

Tài liệu tham khảo

Casimir, 2016, Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation, Nanomater. Energy, 27, 359, 10.1016/j.nanoen.2016.07.023 Hwang, 2012, Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett., 12, 802, 10.1021/nl203817r Fan, 2020, Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions, Electrochim. Acta, 332, 135507, 10.1016/j.electacta.2019.135507 Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004 Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5, 10908, 10.1038/srep10908 Ryu, 2017, Practical considerations of Si-based anodes for lithium-ion battery applications, Nano Research, 10, 3970, 10.1007/s12274-017-1692-2 Hwang, 2012, Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett., 12, 802, 10.1021/nl203817r Zhang, 2012, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 12, 2778, 10.1021/nl204551m Cui, 2010, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano, 4, 3671, 10.1021/nn100619m Zhao, 2019, Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control, ACS Nano, 13, 10908, 10.1021/acsnano.9b00670 Cen, 2019, Synthesis of Si anode with a microsized-branched structure from recovered Al scrap for use in Li-Ion batteries, J. Power Sources, 410, 31, 10.1016/j.jpowsour.2018.10.097 Chang, 2018, Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries, Nat. Commun., 9, 1, 10.1038/s41467-018-05986-9 Chang, 2015, Multiscale analysis of prelithiated silicon nanowire for Li-ion battery, Comput. Mater. Sci., 98, 99, 10.1016/j.commatsci.2014.11.001 Hu, 2011, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 367, 10.1039/C0CC02078H An, 2019, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nat. Commun., 10, 1447, 10.1038/s41467-019-09510-5 Sun, 2019, Porous Si/C anode materials by Al-Si dealloying method with PEA surfactant assisted cross-linked carbon coating for lithium-ion battery applications, Electrochim. Acta, 327, 134995, 10.1016/j.electacta.2019.134995 Zhao, 2019, Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control, ACS Nano, 13, 5602, 10.1021/acsnano.9b00670 Liu, 2013, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries, Sci. Rep., 3, 1622, 10.1038/srep01622 Yang, 2017, Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage, Adv. Mater., 29, 1700523, 10.1002/adma.201700523 Fang, 2019, Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes, Electrochim. Acta, 317, 575, 10.1016/j.electacta.2019.06.028 Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5, 10908, 10.1038/srep10908 Jiao, 2018, Controlled scalable synthesis of yolk-shell structured large-size industrial silicon with interconnected carbon network for lithium storage, Electrochim. Acta, 283, 1702, 10.1016/j.electacta.2018.07.143 Niu, 2015, Direct amination of Si nanoparticles for the preparation of Si@ ultrathin SiO x@ graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem., 3, 19892, 10.1039/C5TA05386B Zhang, 2014, Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies, Nano Lett., 14, 7161, 10.1021/nl503776u Sim, 2013, Critical thickness of SiO2 coating layer on core@ shell bulk@ nanowire Si anode materials for Li-ion batteries, Adv. Mater., 25, 4498, 10.1002/adma.201301454 McDowell, 2011, Novel size and surface oxide effects in silicon nanowires as lithium battery anodes, Nano Lett., 11, 4018, 10.1021/nl202630n Fan, 2018, A fluoride ion-mediated continuous etching–redeposition strategy to synthesize Si nanocomposites with appropriate SiO2 coating layers for Li-ion batteries, Chem. Commun., 54, 12447, 10.1039/C8CC05034A Zheng, 2018, Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries, Advanced Energy Materials, 8, 1801718, 10.1002/aenm.201801718 Xu, 2011, Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem., 21, 9849, 10.1039/c0jm04309e Delpuech, 2014, Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies, J. Phys. Chem. C, 118, 17318, 10.1021/jp503949y Koo, 2012, A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries, Angew. Chem. Int. Ed., 51, 8762, 10.1002/anie.201201568 Maver, 2011, An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes, J. Mater. Chem., 21, 4071, 10.1039/c0jm04481d Mazouzi, 2009, Silicon composite electrode with high capacity and long cycle life, Electrochem. Solid State Lett., 12, A215, 10.1149/1.3212894 Legrand, 1990, Hydroxyls of silica powders, Adv. Colloid Interface Sci., 33, 91, 10.1016/0001-8686(90)80027-W Song, 2009, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochem. Solid State Lett., 12, A23, 10.1149/1.3028216 Warring, 2016, Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy, Langmuir, 32, 1568, 10.1021/acs.langmuir.5b04506 Arigane, 1999, In situ FT-IR and photoluminescence study of porous silicon during exposure to F2, H2O, and D2O, Surf. Sci., 427, 304, 10.1016/S0039-6028(99)00294-0 Struck, 1997, Vibrational study of silicon oxidation: H2O on Si(100), Surf. Sci., 380, 444, 10.1016/S0039-6028(97)00041-1 Wise, 1996, Reaction kinetics of H2O with chlorinated Si(111)-(7 × 7) and porous silicon surfaces, Surf. Sci., 364, 367, 10.1016/0039-6028(96)00595-X McGonigal, 1990, Infrared reflection absorption Spectroscopy study of the chemisorption of small molecules (H2, O2 and H2O) on silicon, J. Electron. Spectrosc. Relat. Phenom., 54, 1033, 10.1016/0368-2048(90)80293-J Gräf, 1989, Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces, J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films, 7, 808, 10.1116/1.575845 Oellig, 1984, The state of chemisorption of H2O on silicon surfaces at room temperature, Solid State Commun., 51, 7, 10.1016/0038-1098(84)90759-2 Ibach, 1982, Dissociative chemisorption of H2O on Si(100) and Si(111) - a vibrational study, Solid State Commun., 42, 457, 10.1016/0038-1098(82)90972-3 Niu, 2015, Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem., 3, 19892, 10.1039/C5TA05386B Bahruji, 2009, Photoactivated reaction of water with silicon nanoparticles, Int. J. Hydrogen Energy, 34, 8504, 10.1016/j.ijhydene.2009.08.039 Innocenzi, 2003, Order−Disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy, J. Phys. Chem. B, 107, 4711, 10.1021/jp026609z Hayakawa, 2000, AM1 study on infra-red spectra of silica clusters modified by fluorine, J. Non-Cryst. Solids, 262, 264, 10.1016/S0022-3093(99)00664-X Warring, 2016, Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy, Langmuir, 32, 1568, 10.1021/acs.langmuir.5b04506 Takamura, 1964, Infrared characteristic bands of highly dispersed silica, Kolloid-Z. Z. Polym., 195, 12, 10.1007/BF01500878 Yogi, 2018, Quantifying the short-range order in amorphous silicon by Raman scattering, Anal. Chem., 90, 8123, 10.1021/acs.analchem.8b01352 Sun, 2019, Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage, Carbon, 155, 601, 10.1016/j.carbon.2019.08.059 Gupta, 2009, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals, Solid State Commun., 149, 1989, 10.1016/j.ssc.2009.08.036 Mishra, 2002, Raman, photoluminescence and optical absorption studies on nanocrystalline silicon, Mater. Sci. Eng., B, 95, 202, 10.1016/S0921-5107(02)00234-9 Wang, 2000, Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects, Phys. Rev. B, 61, 16827, 10.1103/PhysRevB.61.16827 Li, 2020, Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries, Electrochim. Acta, 331, 135331, 10.1016/j.electacta.2019.135331 Miller, 1985, X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces, Anal. Chem., 57, 2314, 10.1021/ac00289a033 Kobayashi, 1994, Direct spectroscopic evidence of bias-induced shifts of semiconductor band edges for metal-insulator-semiconductor diodes, Jpn. J. Appl. Phys., 33, L754, 10.1143/JJAP.33.L754 Hollinger, 1984, Probing the transition layer at the SiO2-Si interface using core level photoemission, Appl. Phys. Lett., 44, 93, 10.1063/1.94565 Nguyen, 1989, XPS study of SiO thin films and SiO-metal interfaces, J. Phys. Condens. Matter, 1, 5197, 10.1088/0953-8984/1/31/019 Miyachi, 2005, Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc., 152, A2089, 10.1149/1.2013210 Bridel, 2010, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chem. Mater., 22, 1229, 10.1021/cm902688w Mukherjee, 2012, Nanostructured electrodes for high-power lithium ion batteries, Nanomater. Energy, 1, 518, 10.1016/j.nanoen.2012.04.001 Sun, 2015, Two-dimensional tin disulfide nanosheets for enhanced sodium storage, ACS Nano, 9, 11371, 10.1021/acsnano.5b05229 Sun, 2016, A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling, Electrochim. Acta, 187, 1, 10.1016/j.electacta.2015.11.020 Hu, 2014, Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries, J. Mater. Chem., 2, 9118, 10.1039/C4TA01013B Sun, 2016, Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries, J. Power Sources, 318, 113, 10.1016/j.jpowsour.2016.04.016